Base ten decimal system signed integer number 1 431 655 766 converted to signed binary

How to convert the signed integer in decimal system (in base 10):
1 431 655 766(10)
to a signed binary

1. Divide the number repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:

  • division = quotient + remainder;
  • 1 431 655 766 ÷ 2 = 715 827 883 + 0;
  • 715 827 883 ÷ 2 = 357 913 941 + 1;
  • 357 913 941 ÷ 2 = 178 956 970 + 1;
  • 178 956 970 ÷ 2 = 89 478 485 + 0;
  • 89 478 485 ÷ 2 = 44 739 242 + 1;
  • 44 739 242 ÷ 2 = 22 369 621 + 0;
  • 22 369 621 ÷ 2 = 11 184 810 + 1;
  • 11 184 810 ÷ 2 = 5 592 405 + 0;
  • 5 592 405 ÷ 2 = 2 796 202 + 1;
  • 2 796 202 ÷ 2 = 1 398 101 + 0;
  • 1 398 101 ÷ 2 = 699 050 + 1;
  • 699 050 ÷ 2 = 349 525 + 0;
  • 349 525 ÷ 2 = 174 762 + 1;
  • 174 762 ÷ 2 = 87 381 + 0;
  • 87 381 ÷ 2 = 43 690 + 1;
  • 43 690 ÷ 2 = 21 845 + 0;
  • 21 845 ÷ 2 = 10 922 + 1;
  • 10 922 ÷ 2 = 5 461 + 0;
  • 5 461 ÷ 2 = 2 730 + 1;
  • 2 730 ÷ 2 = 1 365 + 0;
  • 1 365 ÷ 2 = 682 + 1;
  • 682 ÷ 2 = 341 + 0;
  • 341 ÷ 2 = 170 + 1;
  • 170 ÷ 2 = 85 + 0;
  • 85 ÷ 2 = 42 + 1;
  • 42 ÷ 2 = 21 + 0;
  • 21 ÷ 2 = 10 + 1;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number, by taking all the remainders starting from the bottom of the list constructed above:

1 431 655 766(10) = 101 0101 0101 0101 0101 0101 0101 0110(2)

3. Determine the signed binary number bit length:

The base 2 number's actual length, in bits: 31.

A signed binary's bit length must be equal to a power of 2, as of:
21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...

First bit (the leftmost) is reserved for the sign:
0 = positive integer number, 1 = negative integer number

The least number that is a power of 2 and is larger than the actual length so that the first bit (leftmost) could be zero is: 32.

4. Positive binary computer representation on 32 bits (4 Bytes) - if needed, add extra 0s in front (to the left) of the base 2 number, up to the required length:

1 431 655 766(10) = 0101 0101 0101 0101 0101 0101 0101 0110

Conclusion:

Number 1 431 655 766, a signed integer, converted from decimal system (base 10) to signed binary:
1 431 655 766(10) = 0101 0101 0101 0101 0101 0101 0101 0110

First bit (the leftmost) is reserved for the sign:
0 = positive integer number, 1 = negative integer number


Spaces used to group numbers digits: for binary, by 4; for decimal, by 3.

Convert signed integer numbers from the decimal system (base ten) to signed binary

How to convert a base ten signed integer number to signed binary:

1) Divide the positive version of number repeatedly by 2, keeping track of each remainder, till we get a quotient that is zero.

2) Construct the base 2 representation by taking the previously calculated remainders starting from the last remainder up to the first one, in that order.

3) Construct the positive binary computer representation so that the first bit is zero.

4) Only if the initial number is negative, change the first bit (the leftmost), from 0 to 1. The leftmost bit is reserved for the sign, 1 = negative, 0 = positive.

Latest signed integers numbers converted from decimal (base ten) to signed binary

How to convert signed integers from decimal system to binary code system

Follow the steps below to convert a signed base ten integer number to signed binary:

  • 1. In a signed binary, first bit (the leftmost) is reserved for sign: 0 = positive integer number, 1 = positive integer number. If the number to be converted is negative, start with its positive version.
  • 2. Divide repeatedly by 2 the positive integer number keeping track of each remainder. STOP when we get a quotient that is ZERO.
  • 3. Construct the base 2 representation of the positive number, by taking all the remainders starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Binary numbers represented in computer language have a length of 4, 8, 16, 32, 64, ... bits (power of 2) - if needed, fill in extra '0' bits in front of the base 2 number (to the left), up to the right length; this way the first bit (the leftmost one) is always '0', as for a positive representation.
  • 5. To get the negative reprezentation of the number, simply switch the first bit (the leftmost one), from '0' to '1'.

Example: convert the negative number -63 from decimal system (base ten) to signed binary code system:

  • 1. Start with the positive version of the number: |-63| = 63;
  • 2. Divide repeatedly 63 by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder
    • 63 ÷ 2 = 31 + 1
    • 31 ÷ 2 = 15 + 1
    • 15 ÷ 2 = 7 + 1
    • 7 ÷ 2 = 3 + 1
    • 3 ÷ 2 = 1 + 1
    • 1 ÷ 2 = 0 + 1
  • 3. Construct the base 2 representation of the positive number, by taking all the remainders starting from the bottom of the list constructed above:
    63(10) = 11 1111(2)
  • 4. The actual length of base 2 representation number is 6, so the positive binary computer representation length of the signed binary will take in this case 8 bits (the least power of 2 higher than 6) - add extra '0's in front (to the left), up to the required length; this way the first bit (the leftmost one) is to be '0', as for a positive number:
    63(10) = 0011 1111(2)
  • 5. To get the negative integer number representation simply change the first bit (the leftmost), from '0' to '1':
    -63(10) = 1011 1111
  • Number -63(10), signed integer, converted from decimal system (base 10) to signed binary = 1011 1111