Signed: Integer -> Binary: 1 234 567 890 123 330 Convert the Integer Number to a Signed Binary. Converting and Writing the Base Ten Decimal System Signed Integer as Binary Code (Written in Base Two)
Signed integer number 1 234 567 890 123 330(10)
converted and written as a signed binary (base 2) = ?
1. Divide the number repeatedly by 2:
Keep track of each remainder.
We stop when we get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 234 567 890 123 330 ÷ 2 = 617 283 945 061 665 + 0;
- 617 283 945 061 665 ÷ 2 = 308 641 972 530 832 + 1;
- 308 641 972 530 832 ÷ 2 = 154 320 986 265 416 + 0;
- 154 320 986 265 416 ÷ 2 = 77 160 493 132 708 + 0;
- 77 160 493 132 708 ÷ 2 = 38 580 246 566 354 + 0;
- 38 580 246 566 354 ÷ 2 = 19 290 123 283 177 + 0;
- 19 290 123 283 177 ÷ 2 = 9 645 061 641 588 + 1;
- 9 645 061 641 588 ÷ 2 = 4 822 530 820 794 + 0;
- 4 822 530 820 794 ÷ 2 = 2 411 265 410 397 + 0;
- 2 411 265 410 397 ÷ 2 = 1 205 632 705 198 + 1;
- 1 205 632 705 198 ÷ 2 = 602 816 352 599 + 0;
- 602 816 352 599 ÷ 2 = 301 408 176 299 + 1;
- 301 408 176 299 ÷ 2 = 150 704 088 149 + 1;
- 150 704 088 149 ÷ 2 = 75 352 044 074 + 1;
- 75 352 044 074 ÷ 2 = 37 676 022 037 + 0;
- 37 676 022 037 ÷ 2 = 18 838 011 018 + 1;
- 18 838 011 018 ÷ 2 = 9 419 005 509 + 0;
- 9 419 005 509 ÷ 2 = 4 709 502 754 + 1;
- 4 709 502 754 ÷ 2 = 2 354 751 377 + 0;
- 2 354 751 377 ÷ 2 = 1 177 375 688 + 1;
- 1 177 375 688 ÷ 2 = 588 687 844 + 0;
- 588 687 844 ÷ 2 = 294 343 922 + 0;
- 294 343 922 ÷ 2 = 147 171 961 + 0;
- 147 171 961 ÷ 2 = 73 585 980 + 1;
- 73 585 980 ÷ 2 = 36 792 990 + 0;
- 36 792 990 ÷ 2 = 18 396 495 + 0;
- 18 396 495 ÷ 2 = 9 198 247 + 1;
- 9 198 247 ÷ 2 = 4 599 123 + 1;
- 4 599 123 ÷ 2 = 2 299 561 + 1;
- 2 299 561 ÷ 2 = 1 149 780 + 1;
- 1 149 780 ÷ 2 = 574 890 + 0;
- 574 890 ÷ 2 = 287 445 + 0;
- 287 445 ÷ 2 = 143 722 + 1;
- 143 722 ÷ 2 = 71 861 + 0;
- 71 861 ÷ 2 = 35 930 + 1;
- 35 930 ÷ 2 = 17 965 + 0;
- 17 965 ÷ 2 = 8 982 + 1;
- 8 982 ÷ 2 = 4 491 + 0;
- 4 491 ÷ 2 = 2 245 + 1;
- 2 245 ÷ 2 = 1 122 + 1;
- 1 122 ÷ 2 = 561 + 0;
- 561 ÷ 2 = 280 + 1;
- 280 ÷ 2 = 140 + 0;
- 140 ÷ 2 = 70 + 0;
- 70 ÷ 2 = 35 + 0;
- 35 ÷ 2 = 17 + 1;
- 17 ÷ 2 = 8 + 1;
- 8 ÷ 2 = 4 + 0;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 234 567 890 123 330(10) = 100 0110 0010 1101 0101 0011 1100 1000 1010 1011 1010 0100 0010(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 51.
A signed binary's bit length must be equal to a power of 2, as of:
21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
The first bit (the leftmost) is reserved for the sign:
0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 51,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:
Number 1 234 567 890 123 330(10), a signed integer number (with sign),
converted from decimal system (from base 10)
and written as a signed binary (in base 2):
1 234 567 890 123 330(10) = 0000 0000 0000 0100 0110 0010 1101 0101 0011 1100 1000 1010 1011 1010 0100 0010
The first bit (the leftmost) is reserved for the sign:
0 = positive integer number, 1 = negative integer number
Spaces were used to group digits: for binary, by 4, for decimal, by 3.
Convert signed integer numbers from the decimal system (base ten) to signed binary (written in base two)
How to convert a base ten signed integer number to signed binary:
1) Divide the positive version of the number repeatedly by 2, keeping track of each remainder. Stop when getting a quotient that is 0.
2) Construct the base two representation by taking the previously calculated remainders starting from the last remainder up to the first one.
3) Construct the positive binary computer representation so that the first bit is 0.
4) Only if the initial number is negative, change the first bit (the leftmost), from 0 to 1. The leftmost bit is reserved for the sign, 1 = negative, 0 = positive.