Convert 1 111 111 111 109 989 to signed binary, from a base 10 decimal system signed integer number

How to convert the signed integer in decimal system (in base 10):
1 111 111 111 109 989(10)
to a signed binary

1. Divide the number repeatedly by 2:

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.

  • division = quotient + remainder;
  • 1 111 111 111 109 989 ÷ 2 = 555 555 555 554 994 + 1;
  • 555 555 555 554 994 ÷ 2 = 277 777 777 777 497 + 0;
  • 277 777 777 777 497 ÷ 2 = 138 888 888 888 748 + 1;
  • 138 888 888 888 748 ÷ 2 = 69 444 444 444 374 + 0;
  • 69 444 444 444 374 ÷ 2 = 34 722 222 222 187 + 0;
  • 34 722 222 222 187 ÷ 2 = 17 361 111 111 093 + 1;
  • 17 361 111 111 093 ÷ 2 = 8 680 555 555 546 + 1;
  • 8 680 555 555 546 ÷ 2 = 4 340 277 777 773 + 0;
  • 4 340 277 777 773 ÷ 2 = 2 170 138 888 886 + 1;
  • 2 170 138 888 886 ÷ 2 = 1 085 069 444 443 + 0;
  • 1 085 069 444 443 ÷ 2 = 542 534 722 221 + 1;
  • 542 534 722 221 ÷ 2 = 271 267 361 110 + 1;
  • 271 267 361 110 ÷ 2 = 135 633 680 555 + 0;
  • 135 633 680 555 ÷ 2 = 67 816 840 277 + 1;
  • 67 816 840 277 ÷ 2 = 33 908 420 138 + 1;
  • 33 908 420 138 ÷ 2 = 16 954 210 069 + 0;
  • 16 954 210 069 ÷ 2 = 8 477 105 034 + 1;
  • 8 477 105 034 ÷ 2 = 4 238 552 517 + 0;
  • 4 238 552 517 ÷ 2 = 2 119 276 258 + 1;
  • 2 119 276 258 ÷ 2 = 1 059 638 129 + 0;
  • 1 059 638 129 ÷ 2 = 529 819 064 + 1;
  • 529 819 064 ÷ 2 = 264 909 532 + 0;
  • 264 909 532 ÷ 2 = 132 454 766 + 0;
  • 132 454 766 ÷ 2 = 66 227 383 + 0;
  • 66 227 383 ÷ 2 = 33 113 691 + 1;
  • 33 113 691 ÷ 2 = 16 556 845 + 1;
  • 16 556 845 ÷ 2 = 8 278 422 + 1;
  • 8 278 422 ÷ 2 = 4 139 211 + 0;
  • 4 139 211 ÷ 2 = 2 069 605 + 1;
  • 2 069 605 ÷ 2 = 1 034 802 + 1;
  • 1 034 802 ÷ 2 = 517 401 + 0;
  • 517 401 ÷ 2 = 258 700 + 1;
  • 258 700 ÷ 2 = 129 350 + 0;
  • 129 350 ÷ 2 = 64 675 + 0;
  • 64 675 ÷ 2 = 32 337 + 1;
  • 32 337 ÷ 2 = 16 168 + 1;
  • 16 168 ÷ 2 = 8 084 + 0;
  • 8 084 ÷ 2 = 4 042 + 0;
  • 4 042 ÷ 2 = 2 021 + 0;
  • 2 021 ÷ 2 = 1 010 + 1;
  • 1 010 ÷ 2 = 505 + 0;
  • 505 ÷ 2 = 252 + 1;
  • 252 ÷ 2 = 126 + 0;
  • 126 ÷ 2 = 63 + 0;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number:

Take all the remainders starting from the bottom of the list constructed above.

1 111 111 111 109 989(10) = 11 1111 0010 1000 1100 1011 0111 0001 0101 0110 1101 0110 0101(2)


3. Determine the signed binary number bit length:

The base 2 number's actual length, in bits: 50.

A signed binary's bit length must be equal to a power of 2, as of:
21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...

First bit (the leftmost) is reserved for the sign:
0 = positive integer number, 1 = negative integer number

The least number that is:


a power of 2


and is larger than the actual length, 50,


so that the first bit (leftmost) could be zero


(we deal with a positive number at this moment)


is: 64.


4. Positive binary computer representation on 64 bits (8 Bytes):

If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:

1 111 111 111 109 989(10) = 0000 0000 0000 0011 1111 0010 1000 1100 1011 0111 0001 0101 0110 1101 0110 0101


Conclusion:

Number 1 111 111 111 109 989, a signed integer, converted from decimal system (base 10) to signed binary:

1 111 111 111 109 989(10) = 0000 0000 0000 0011 1111 0010 1000 1100 1011 0111 0001 0101 0110 1101 0110 0101

First bit (the leftmost) is reserved for the sign:
0 = positive integer number, 1 = negative integer number

Spaces used to group digits: for binary, by 4; for decimal, by 3.


More operations of this kind:

1 111 111 111 109 988 = ? | Signed integer 1 111 111 111 109 990 = ?


Convert signed integer numbers from the decimal system (base ten) to signed binary

How to convert a base 10 signed integer number to signed binary:

1) Divide the positive version of number repeatedly by 2, keeping track of each remainder, till getting a quotient that is 0.

2) Construct the base 2 representation by taking the previously calculated remainders starting from the last remainder up to the first one, in that order.

3) Construct the positive binary computer representation so that the first bit is 0.

4) Only if the initial number is negative, change the first bit (the leftmost), from 0 to 1. The leftmost bit is reserved for the sign, 1 = negative, 0 = positive.

Latest signed integer numbers in decimal (base ten) converted to signed binary

How to convert signed integers from decimal system to binary code system

Follow the steps below to convert a signed base ten integer number to signed binary:

  • 1. In a signed binary, first bit (the leftmost) is reserved for sign: 0 = positive integer number, 1 = positive integer number. If the number to be converted is negative, start with its positive version.
  • 2. Divide repeatedly by 2 the positive integer number keeping track of each remainder. STOP when we get a quotient that is ZERO.
  • 3. Construct the base 2 representation of the positive number, by taking all the remainders starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Binary numbers represented in computer language have a length of 4, 8, 16, 32, 64, ... bits (power of 2) - if needed, fill in extra '0' bits in front of the base 2 number (to the left), up to the right length; this way the first bit (the leftmost one) is always '0', as for a positive representation.
  • 5. To get the negative reprezentation of the number, simply switch the first bit (the leftmost one), from '0' to '1'.

Example: convert the negative number -63 from decimal system (base ten) to signed binary code system:

  • 1. Start with the positive version of the number: |-63| = 63;
  • 2. Divide repeatedly 63 by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder
    • 63 ÷ 2 = 31 + 1
    • 31 ÷ 2 = 15 + 1
    • 15 ÷ 2 = 7 + 1
    • 7 ÷ 2 = 3 + 1
    • 3 ÷ 2 = 1 + 1
    • 1 ÷ 2 = 0 + 1
  • 3. Construct the base 2 representation of the positive number, by taking all the remainders starting from the bottom of the list constructed above:
    63(10) = 11 1111(2)
  • 4. The actual length of base 2 representation number is 6, so the positive binary computer representation length of the signed binary will take in this case 8 bits (the least power of 2 higher than 6) - add extra '0's in front (to the left), up to the required length; this way the first bit (the leftmost one) is to be '0', as for a positive number:
    63(10) = 0011 1111(2)
  • 5. To get the negative integer number representation simply change the first bit (the leftmost), from '0' to '1':
    -63(10) = 1011 1111
  • Number -63(10), signed integer, converted from decimal system (base 10) to signed binary = 1011 1111