What are the required steps to convert base 10 integer
number 1 111 111 111 010 224 to signed binary code (in base 2)?
- A signed integer, written in base ten, or a decimal system number, is a number written using the digits 0 through 9 and the sign, which can be positive (+) or negative (-). If positive, the sign is usually not written. A number written in base two, or binary, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 111 111 111 010 224 ÷ 2 = 555 555 555 505 112 + 0;
- 555 555 555 505 112 ÷ 2 = 277 777 777 752 556 + 0;
- 277 777 777 752 556 ÷ 2 = 138 888 888 876 278 + 0;
- 138 888 888 876 278 ÷ 2 = 69 444 444 438 139 + 0;
- 69 444 444 438 139 ÷ 2 = 34 722 222 219 069 + 1;
- 34 722 222 219 069 ÷ 2 = 17 361 111 109 534 + 1;
- 17 361 111 109 534 ÷ 2 = 8 680 555 554 767 + 0;
- 8 680 555 554 767 ÷ 2 = 4 340 277 777 383 + 1;
- 4 340 277 777 383 ÷ 2 = 2 170 138 888 691 + 1;
- 2 170 138 888 691 ÷ 2 = 1 085 069 444 345 + 1;
- 1 085 069 444 345 ÷ 2 = 542 534 722 172 + 1;
- 542 534 722 172 ÷ 2 = 271 267 361 086 + 0;
- 271 267 361 086 ÷ 2 = 135 633 680 543 + 0;
- 135 633 680 543 ÷ 2 = 67 816 840 271 + 1;
- 67 816 840 271 ÷ 2 = 33 908 420 135 + 1;
- 33 908 420 135 ÷ 2 = 16 954 210 067 + 1;
- 16 954 210 067 ÷ 2 = 8 477 105 033 + 1;
- 8 477 105 033 ÷ 2 = 4 238 552 516 + 1;
- 4 238 552 516 ÷ 2 = 2 119 276 258 + 0;
- 2 119 276 258 ÷ 2 = 1 059 638 129 + 0;
- 1 059 638 129 ÷ 2 = 529 819 064 + 1;
- 529 819 064 ÷ 2 = 264 909 532 + 0;
- 264 909 532 ÷ 2 = 132 454 766 + 0;
- 132 454 766 ÷ 2 = 66 227 383 + 0;
- 66 227 383 ÷ 2 = 33 113 691 + 1;
- 33 113 691 ÷ 2 = 16 556 845 + 1;
- 16 556 845 ÷ 2 = 8 278 422 + 1;
- 8 278 422 ÷ 2 = 4 139 211 + 0;
- 4 139 211 ÷ 2 = 2 069 605 + 1;
- 2 069 605 ÷ 2 = 1 034 802 + 1;
- 1 034 802 ÷ 2 = 517 401 + 0;
- 517 401 ÷ 2 = 258 700 + 1;
- 258 700 ÷ 2 = 129 350 + 0;
- 129 350 ÷ 2 = 64 675 + 0;
- 64 675 ÷ 2 = 32 337 + 1;
- 32 337 ÷ 2 = 16 168 + 1;
- 16 168 ÷ 2 = 8 084 + 0;
- 8 084 ÷ 2 = 4 042 + 0;
- 4 042 ÷ 2 = 2 021 + 0;
- 2 021 ÷ 2 = 1 010 + 1;
- 1 010 ÷ 2 = 505 + 0;
- 505 ÷ 2 = 252 + 1;
- 252 ÷ 2 = 126 + 0;
- 126 ÷ 2 = 63 + 0;
- 63 ÷ 2 = 31 + 1;
- 31 ÷ 2 = 15 + 1;
- 15 ÷ 2 = 7 + 1;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 111 111 111 010 224(10) = 11 1111 0010 1000 1100 1011 0111 0001 0011 1110 0111 1011 0000(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 50.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) is reserved for the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 50,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:
1 111 111 111 010 224(10) Base 10 integer number converted and written as a signed binary code (in base 2):
1 111 111 111 010 224(10) = 0000 0000 0000 0011 1111 0010 1000 1100 1011 0111 0001 0011 1110 0111 1011 0000
Spaces were used to group digits: for binary, by 4, for decimal, by 3.