Signed: Integer ↗ Binary: 11 101 110 112 Convert the Integer Number to a Signed Binary. Converting and Writing the Base Ten Decimal System Signed Integer as Binary Code (Written in Base Two)

Signed integer number 11 101 110 112(10)
converted and written as a signed binary (base 2) = ?

1. Divide the number repeatedly by 2:

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 11 101 110 112 ÷ 2 = 5 550 555 056 + 0;
  • 5 550 555 056 ÷ 2 = 2 775 277 528 + 0;
  • 2 775 277 528 ÷ 2 = 1 387 638 764 + 0;
  • 1 387 638 764 ÷ 2 = 693 819 382 + 0;
  • 693 819 382 ÷ 2 = 346 909 691 + 0;
  • 346 909 691 ÷ 2 = 173 454 845 + 1;
  • 173 454 845 ÷ 2 = 86 727 422 + 1;
  • 86 727 422 ÷ 2 = 43 363 711 + 0;
  • 43 363 711 ÷ 2 = 21 681 855 + 1;
  • 21 681 855 ÷ 2 = 10 840 927 + 1;
  • 10 840 927 ÷ 2 = 5 420 463 + 1;
  • 5 420 463 ÷ 2 = 2 710 231 + 1;
  • 2 710 231 ÷ 2 = 1 355 115 + 1;
  • 1 355 115 ÷ 2 = 677 557 + 1;
  • 677 557 ÷ 2 = 338 778 + 1;
  • 338 778 ÷ 2 = 169 389 + 0;
  • 169 389 ÷ 2 = 84 694 + 1;
  • 84 694 ÷ 2 = 42 347 + 0;
  • 42 347 ÷ 2 = 21 173 + 1;
  • 21 173 ÷ 2 = 10 586 + 1;
  • 10 586 ÷ 2 = 5 293 + 0;
  • 5 293 ÷ 2 = 2 646 + 1;
  • 2 646 ÷ 2 = 1 323 + 0;
  • 1 323 ÷ 2 = 661 + 1;
  • 661 ÷ 2 = 330 + 1;
  • 330 ÷ 2 = 165 + 0;
  • 165 ÷ 2 = 82 + 1;
  • 82 ÷ 2 = 41 + 0;
  • 41 ÷ 2 = 20 + 1;
  • 20 ÷ 2 = 10 + 0;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number:

Take all the remainders starting from the bottom of the list constructed above.


11 101 110 112(10) = 10 1001 0101 1010 1101 0111 1111 0110 0000(2)


3. Determine the signed binary number bit length:

The base 2 number's actual length, in bits: 34.


A signed binary's bit length must be equal to a power of 2, as of:

21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...


The first bit (the leftmost) is reserved for the sign:

0 = positive integer number, 1 = negative integer number


The least number that is:


1) a power of 2

2) and is larger than the actual length, 34,

3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)


=== is: 64.


4. Get the positive binary computer representation on 64 bits (8 Bytes):

If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:


Number 11 101 110 112(10), a signed integer number (with sign),
converted from decimal system (from base 10)
and written as a signed binary (in base 2):

11 101 110 112(10) = 0000 0000 0000 0000 0000 0000 0000 0010 1001 0101 1010 1101 0111 1111 0110 0000

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

The latest signed integer numbers (that are written in decimal system, in base ten) converted and written as signed binary numbers

How to convert signed integers from decimal system to binary code system

Follow the steps below to convert a signed base ten integer number to signed binary:

  • 1. In a signed binary, first bit (the leftmost) is reserved for sign: 0 = positive integer number, 1 = positive integer number. If the number to be converted is negative, start with its positive version.
  • 2. Divide repeatedly by 2 the positive integer number keeping track of each remainder. STOP when we get a quotient that is ZERO.
  • 3. Construct the base 2 representation of the positive number, by taking all the remainders starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Binary numbers represented in computer language have a length of 4, 8, 16, 32, 64, ... bits (power of 2) - if needed, fill in extra '0' bits in front of the base 2 number (to the left), up to the right length; this way the first bit (the leftmost one) is always '0', as for a positive representation.
  • 5. To get the negative reprezentation of the number, simply switch the first bit (the leftmost one), from '0' to '1'.

Example: convert the negative number -63 from decimal system (base ten) to signed binary code system:

  • 1. Start with the positive version of the number: |-63| = 63;
  • 2. Divide repeatedly 63 by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder
    • 63 ÷ 2 = 31 + 1
    • 31 ÷ 2 = 15 + 1
    • 15 ÷ 2 = 7 + 1
    • 7 ÷ 2 = 3 + 1
    • 3 ÷ 2 = 1 + 1
    • 1 ÷ 2 = 0 + 1
  • 3. Construct the base 2 representation of the positive number, by taking all the remainders starting from the bottom of the list constructed above:
    63(10) = 11 1111(2)
  • 4. The actual length of base 2 representation number is 6, so the positive binary computer representation length of the signed binary will take in this case 8 bits (the least power of 2 higher than 6) - add extra '0's in front (to the left), up to the required length; this way the first bit (the leftmost one) is to be '0', as for a positive number:
    63(10) = 0011 1111(2)
  • 5. To get the negative integer number representation simply change the first bit (the leftmost), from '0' to '1':
    -63(10) = 1011 1111
  • Number -63(10), signed integer, converted from decimal system (base 10) to signed binary = 1011 1111