1. Divide the number repeatedly by 2:
Keep track of each remainder.
We stop when we get a quotient that is equal to zero.
- division = quotient + remainder;
- 110 010 110 010 035 ÷ 2 = 55 005 055 005 017 + 1;
- 55 005 055 005 017 ÷ 2 = 27 502 527 502 508 + 1;
- 27 502 527 502 508 ÷ 2 = 13 751 263 751 254 + 0;
- 13 751 263 751 254 ÷ 2 = 6 875 631 875 627 + 0;
- 6 875 631 875 627 ÷ 2 = 3 437 815 937 813 + 1;
- 3 437 815 937 813 ÷ 2 = 1 718 907 968 906 + 1;
- 1 718 907 968 906 ÷ 2 = 859 453 984 453 + 0;
- 859 453 984 453 ÷ 2 = 429 726 992 226 + 1;
- 429 726 992 226 ÷ 2 = 214 863 496 113 + 0;
- 214 863 496 113 ÷ 2 = 107 431 748 056 + 1;
- 107 431 748 056 ÷ 2 = 53 715 874 028 + 0;
- 53 715 874 028 ÷ 2 = 26 857 937 014 + 0;
- 26 857 937 014 ÷ 2 = 13 428 968 507 + 0;
- 13 428 968 507 ÷ 2 = 6 714 484 253 + 1;
- 6 714 484 253 ÷ 2 = 3 357 242 126 + 1;
- 3 357 242 126 ÷ 2 = 1 678 621 063 + 0;
- 1 678 621 063 ÷ 2 = 839 310 531 + 1;
- 839 310 531 ÷ 2 = 419 655 265 + 1;
- 419 655 265 ÷ 2 = 209 827 632 + 1;
- 209 827 632 ÷ 2 = 104 913 816 + 0;
- 104 913 816 ÷ 2 = 52 456 908 + 0;
- 52 456 908 ÷ 2 = 26 228 454 + 0;
- 26 228 454 ÷ 2 = 13 114 227 + 0;
- 13 114 227 ÷ 2 = 6 557 113 + 1;
- 6 557 113 ÷ 2 = 3 278 556 + 1;
- 3 278 556 ÷ 2 = 1 639 278 + 0;
- 1 639 278 ÷ 2 = 819 639 + 0;
- 819 639 ÷ 2 = 409 819 + 1;
- 409 819 ÷ 2 = 204 909 + 1;
- 204 909 ÷ 2 = 102 454 + 1;
- 102 454 ÷ 2 = 51 227 + 0;
- 51 227 ÷ 2 = 25 613 + 1;
- 25 613 ÷ 2 = 12 806 + 1;
- 12 806 ÷ 2 = 6 403 + 0;
- 6 403 ÷ 2 = 3 201 + 1;
- 3 201 ÷ 2 = 1 600 + 1;
- 1 600 ÷ 2 = 800 + 0;
- 800 ÷ 2 = 400 + 0;
- 400 ÷ 2 = 200 + 0;
- 200 ÷ 2 = 100 + 0;
- 100 ÷ 2 = 50 + 0;
- 50 ÷ 2 = 25 + 0;
- 25 ÷ 2 = 12 + 1;
- 12 ÷ 2 = 6 + 0;
- 6 ÷ 2 = 3 + 0;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
110 010 110 010 035(10) = 110 0100 0000 1101 1011 1001 1000 0111 0110 0010 1011 0011(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 47.
A signed binary's bit length must be equal to a power of 2, as of:
21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
The first bit (the leftmost) is reserved for the sign:
0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 47,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:
Number 110 010 110 010 035(10), a signed integer number (with sign),
converted from decimal system (from base 10)
and written as a signed binary (in base 2):
110 010 110 010 035(10) = 0000 0000 0000 0000 0110 0100 0000 1101 1011 1001 1000 0111 0110 0010 1011 0011
Spaces were used to group digits: for binary, by 4, for decimal, by 3.