1. Divide the number repeatedly by 2:
Keep track of each remainder.
We stop when we get a quotient that is equal to zero.
- division = quotient + remainder;
- 106 048 781 380 917 ÷ 2 = 53 024 390 690 458 + 1;
- 53 024 390 690 458 ÷ 2 = 26 512 195 345 229 + 0;
- 26 512 195 345 229 ÷ 2 = 13 256 097 672 614 + 1;
- 13 256 097 672 614 ÷ 2 = 6 628 048 836 307 + 0;
- 6 628 048 836 307 ÷ 2 = 3 314 024 418 153 + 1;
- 3 314 024 418 153 ÷ 2 = 1 657 012 209 076 + 1;
- 1 657 012 209 076 ÷ 2 = 828 506 104 538 + 0;
- 828 506 104 538 ÷ 2 = 414 253 052 269 + 0;
- 414 253 052 269 ÷ 2 = 207 126 526 134 + 1;
- 207 126 526 134 ÷ 2 = 103 563 263 067 + 0;
- 103 563 263 067 ÷ 2 = 51 781 631 533 + 1;
- 51 781 631 533 ÷ 2 = 25 890 815 766 + 1;
- 25 890 815 766 ÷ 2 = 12 945 407 883 + 0;
- 12 945 407 883 ÷ 2 = 6 472 703 941 + 1;
- 6 472 703 941 ÷ 2 = 3 236 351 970 + 1;
- 3 236 351 970 ÷ 2 = 1 618 175 985 + 0;
- 1 618 175 985 ÷ 2 = 809 087 992 + 1;
- 809 087 992 ÷ 2 = 404 543 996 + 0;
- 404 543 996 ÷ 2 = 202 271 998 + 0;
- 202 271 998 ÷ 2 = 101 135 999 + 0;
- 101 135 999 ÷ 2 = 50 567 999 + 1;
- 50 567 999 ÷ 2 = 25 283 999 + 1;
- 25 283 999 ÷ 2 = 12 641 999 + 1;
- 12 641 999 ÷ 2 = 6 320 999 + 1;
- 6 320 999 ÷ 2 = 3 160 499 + 1;
- 3 160 499 ÷ 2 = 1 580 249 + 1;
- 1 580 249 ÷ 2 = 790 124 + 1;
- 790 124 ÷ 2 = 395 062 + 0;
- 395 062 ÷ 2 = 197 531 + 0;
- 197 531 ÷ 2 = 98 765 + 1;
- 98 765 ÷ 2 = 49 382 + 1;
- 49 382 ÷ 2 = 24 691 + 0;
- 24 691 ÷ 2 = 12 345 + 1;
- 12 345 ÷ 2 = 6 172 + 1;
- 6 172 ÷ 2 = 3 086 + 0;
- 3 086 ÷ 2 = 1 543 + 0;
- 1 543 ÷ 2 = 771 + 1;
- 771 ÷ 2 = 385 + 1;
- 385 ÷ 2 = 192 + 1;
- 192 ÷ 2 = 96 + 0;
- 96 ÷ 2 = 48 + 0;
- 48 ÷ 2 = 24 + 0;
- 24 ÷ 2 = 12 + 0;
- 12 ÷ 2 = 6 + 0;
- 6 ÷ 2 = 3 + 0;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
106 048 781 380 917(10) = 110 0000 0111 0011 0110 0111 1111 0001 0110 1101 0011 0101(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 47.
A signed binary's bit length must be equal to a power of 2, as of:
21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
The first bit (the leftmost) is reserved for the sign:
0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 47,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:
Number 106 048 781 380 917(10), a signed integer number (with sign),
converted from decimal system (from base 10)
and written as a signed binary (in base 2):
106 048 781 380 917(10) = 0000 0000 0000 0000 0110 0000 0111 0011 0110 0111 1111 0001 0110 1101 0011 0101
Spaces were used to group digits: for binary, by 4, for decimal, by 3.