Signed: Integer -> Binary: 1 000 100 010 010 047 Convert the Integer Number to a Signed Binary. Converting and Writing the Base Ten Decimal System Signed Integer as Binary Code (Written in Base Two)
Signed integer number 1 000 100 010 010 047(10)
converted and written as a signed binary (base 2) = ?
1. Divide the number repeatedly by 2:
Keep track of each remainder.
We stop when we get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 000 100 010 010 047 ÷ 2 = 500 050 005 005 023 + 1;
- 500 050 005 005 023 ÷ 2 = 250 025 002 502 511 + 1;
- 250 025 002 502 511 ÷ 2 = 125 012 501 251 255 + 1;
- 125 012 501 251 255 ÷ 2 = 62 506 250 625 627 + 1;
- 62 506 250 625 627 ÷ 2 = 31 253 125 312 813 + 1;
- 31 253 125 312 813 ÷ 2 = 15 626 562 656 406 + 1;
- 15 626 562 656 406 ÷ 2 = 7 813 281 328 203 + 0;
- 7 813 281 328 203 ÷ 2 = 3 906 640 664 101 + 1;
- 3 906 640 664 101 ÷ 2 = 1 953 320 332 050 + 1;
- 1 953 320 332 050 ÷ 2 = 976 660 166 025 + 0;
- 976 660 166 025 ÷ 2 = 488 330 083 012 + 1;
- 488 330 083 012 ÷ 2 = 244 165 041 506 + 0;
- 244 165 041 506 ÷ 2 = 122 082 520 753 + 0;
- 122 082 520 753 ÷ 2 = 61 041 260 376 + 1;
- 61 041 260 376 ÷ 2 = 30 520 630 188 + 0;
- 30 520 630 188 ÷ 2 = 15 260 315 094 + 0;
- 15 260 315 094 ÷ 2 = 7 630 157 547 + 0;
- 7 630 157 547 ÷ 2 = 3 815 078 773 + 1;
- 3 815 078 773 ÷ 2 = 1 907 539 386 + 1;
- 1 907 539 386 ÷ 2 = 953 769 693 + 0;
- 953 769 693 ÷ 2 = 476 884 846 + 1;
- 476 884 846 ÷ 2 = 238 442 423 + 0;
- 238 442 423 ÷ 2 = 119 221 211 + 1;
- 119 221 211 ÷ 2 = 59 610 605 + 1;
- 59 610 605 ÷ 2 = 29 805 302 + 1;
- 29 805 302 ÷ 2 = 14 902 651 + 0;
- 14 902 651 ÷ 2 = 7 451 325 + 1;
- 7 451 325 ÷ 2 = 3 725 662 + 1;
- 3 725 662 ÷ 2 = 1 862 831 + 0;
- 1 862 831 ÷ 2 = 931 415 + 1;
- 931 415 ÷ 2 = 465 707 + 1;
- 465 707 ÷ 2 = 232 853 + 1;
- 232 853 ÷ 2 = 116 426 + 1;
- 116 426 ÷ 2 = 58 213 + 0;
- 58 213 ÷ 2 = 29 106 + 1;
- 29 106 ÷ 2 = 14 553 + 0;
- 14 553 ÷ 2 = 7 276 + 1;
- 7 276 ÷ 2 = 3 638 + 0;
- 3 638 ÷ 2 = 1 819 + 0;
- 1 819 ÷ 2 = 909 + 1;
- 909 ÷ 2 = 454 + 1;
- 454 ÷ 2 = 227 + 0;
- 227 ÷ 2 = 113 + 1;
- 113 ÷ 2 = 56 + 1;
- 56 ÷ 2 = 28 + 0;
- 28 ÷ 2 = 14 + 0;
- 14 ÷ 2 = 7 + 0;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 000 100 010 010 047(10) = 11 1000 1101 1001 0101 1110 1101 1101 0110 0010 0101 1011 1111(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 50.
A signed binary's bit length must be equal to a power of 2, as of:
21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
The first bit (the leftmost) is reserved for the sign:
0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 50,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:
Number 1 000 100 010 010 047(10), a signed integer number (with sign),
converted from decimal system (from base 10)
and written as a signed binary (in base 2):
1 000 100 010 010 047(10) = 0000 0000 0000 0011 1000 1101 1001 0101 1110 1101 1101 0110 0010 0101 1011 1111
The first bit (the leftmost) is reserved for the sign:
0 = positive integer number, 1 = negative integer number
Spaces were used to group digits: for binary, by 4, for decimal, by 3.
Convert signed integer numbers from the decimal system (base ten) to signed binary (written in base two)
How to convert a base ten signed integer number to signed binary:
1) Divide the positive version of the number repeatedly by 2, keeping track of each remainder. Stop when getting a quotient that is 0.
2) Construct the base two representation by taking the previously calculated remainders starting from the last remainder up to the first one.
3) Construct the positive binary computer representation so that the first bit is 0.
4) Only if the initial number is negative, change the first bit (the leftmost), from 0 to 1. The leftmost bit is reserved for the sign, 1 = negative, 0 = positive.