How to convert the signed integer in decimal system (in base 10):
-1 062 731 247(10)
to a signed binary
1. Start with the positive version of the number:
|-1 062 731 247| = 1 062 731 247
2. Divide the number repeatedly by 2:
Keep track of each remainder.
We stop when we get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 062 731 247 ÷ 2 = 531 365 623 + 1;
- 531 365 623 ÷ 2 = 265 682 811 + 1;
- 265 682 811 ÷ 2 = 132 841 405 + 1;
- 132 841 405 ÷ 2 = 66 420 702 + 1;
- 66 420 702 ÷ 2 = 33 210 351 + 0;
- 33 210 351 ÷ 2 = 16 605 175 + 1;
- 16 605 175 ÷ 2 = 8 302 587 + 1;
- 8 302 587 ÷ 2 = 4 151 293 + 1;
- 4 151 293 ÷ 2 = 2 075 646 + 1;
- 2 075 646 ÷ 2 = 1 037 823 + 0;
- 1 037 823 ÷ 2 = 518 911 + 1;
- 518 911 ÷ 2 = 259 455 + 1;
- 259 455 ÷ 2 = 129 727 + 1;
- 129 727 ÷ 2 = 64 863 + 1;
- 64 863 ÷ 2 = 32 431 + 1;
- 32 431 ÷ 2 = 16 215 + 1;
- 16 215 ÷ 2 = 8 107 + 1;
- 8 107 ÷ 2 = 4 053 + 1;
- 4 053 ÷ 2 = 2 026 + 1;
- 2 026 ÷ 2 = 1 013 + 0;
- 1 013 ÷ 2 = 506 + 1;
- 506 ÷ 2 = 253 + 0;
- 253 ÷ 2 = 126 + 1;
- 126 ÷ 2 = 63 + 0;
- 63 ÷ 2 = 31 + 1;
- 31 ÷ 2 = 15 + 1;
- 15 ÷ 2 = 7 + 1;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
3. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 062 731 247(10) = 11 1111 0101 0111 1111 1101 1110 1111(2)
4. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 30.
A signed binary's bit length must be equal to a power of 2, as of:
21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
First bit (the leftmost) is reserved for the sign:
0 = positive integer number, 1 = negative integer number
The least number that is:
a power of 2
and is larger than the actual length, 30,
so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
is: 32.
5. Positive binary computer representation on 32 bits (4 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 32:
1 062 731 247(10) = 0011 1111 0101 0111 1111 1101 1110 1111
6. Get the negative integer number representation:
To get the negative integer number representation on 32 bits (4 Bytes),
change the first bit (the leftmost), from 0 to 1:
-1 062 731 247(10) =
1011 1111 0101 0111 1111 1101 1110 1111
Conclusion:
Number -1 062 731 247, a signed integer, converted from decimal system (base 10) to signed binary:
-1 062 731 247(10) = 1011 1111 0101 0111 1111 1101 1110 1111
First bit (the leftmost) is reserved for the sign:
0 = positive integer number, 1 = negative integer number
Spaces used to group digits: for binary, by 4; for decimal, by 3.
More operations of this kind:
Convert signed integer numbers from the decimal system (base ten) to signed binary