1. Divide the number repeatedly by 2:
Keep track of each remainder.
We stop when we get a quotient that is equal to zero.
- division = quotient + remainder;
- 486 663 237 694 ÷ 2 = 243 331 618 847 + 0;
- 243 331 618 847 ÷ 2 = 121 665 809 423 + 1;
- 121 665 809 423 ÷ 2 = 60 832 904 711 + 1;
- 60 832 904 711 ÷ 2 = 30 416 452 355 + 1;
- 30 416 452 355 ÷ 2 = 15 208 226 177 + 1;
- 15 208 226 177 ÷ 2 = 7 604 113 088 + 1;
- 7 604 113 088 ÷ 2 = 3 802 056 544 + 0;
- 3 802 056 544 ÷ 2 = 1 901 028 272 + 0;
- 1 901 028 272 ÷ 2 = 950 514 136 + 0;
- 950 514 136 ÷ 2 = 475 257 068 + 0;
- 475 257 068 ÷ 2 = 237 628 534 + 0;
- 237 628 534 ÷ 2 = 118 814 267 + 0;
- 118 814 267 ÷ 2 = 59 407 133 + 1;
- 59 407 133 ÷ 2 = 29 703 566 + 1;
- 29 703 566 ÷ 2 = 14 851 783 + 0;
- 14 851 783 ÷ 2 = 7 425 891 + 1;
- 7 425 891 ÷ 2 = 3 712 945 + 1;
- 3 712 945 ÷ 2 = 1 856 472 + 1;
- 1 856 472 ÷ 2 = 928 236 + 0;
- 928 236 ÷ 2 = 464 118 + 0;
- 464 118 ÷ 2 = 232 059 + 0;
- 232 059 ÷ 2 = 116 029 + 1;
- 116 029 ÷ 2 = 58 014 + 1;
- 58 014 ÷ 2 = 29 007 + 0;
- 29 007 ÷ 2 = 14 503 + 1;
- 14 503 ÷ 2 = 7 251 + 1;
- 7 251 ÷ 2 = 3 625 + 1;
- 3 625 ÷ 2 = 1 812 + 1;
- 1 812 ÷ 2 = 906 + 0;
- 906 ÷ 2 = 453 + 0;
- 453 ÷ 2 = 226 + 1;
- 226 ÷ 2 = 113 + 0;
- 113 ÷ 2 = 56 + 1;
- 56 ÷ 2 = 28 + 0;
- 28 ÷ 2 = 14 + 0;
- 14 ÷ 2 = 7 + 0;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
486 663 237 694(10) = 111 0001 0100 1111 0110 0011 1011 0000 0011 1110(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 39.
A signed binary's bit length must be equal to a power of 2, as of:
21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
The first bit (the leftmost) indicates the sign:
0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 39,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Number 486 663 237 694(10), a signed integer number (with sign), converted from decimal system (from base 10) and written as a signed binary in two's complement representation:
Spaces were used to group digits: for binary, by 4, for decimal, by 3.