1. Divide the number repeatedly by 2:
Keep track of each remainder.
We stop when we get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 011 101 110 909 ÷ 2 = 505 550 555 454 + 1;
- 505 550 555 454 ÷ 2 = 252 775 277 727 + 0;
- 252 775 277 727 ÷ 2 = 126 387 638 863 + 1;
- 126 387 638 863 ÷ 2 = 63 193 819 431 + 1;
- 63 193 819 431 ÷ 2 = 31 596 909 715 + 1;
- 31 596 909 715 ÷ 2 = 15 798 454 857 + 1;
- 15 798 454 857 ÷ 2 = 7 899 227 428 + 1;
- 7 899 227 428 ÷ 2 = 3 949 613 714 + 0;
- 3 949 613 714 ÷ 2 = 1 974 806 857 + 0;
- 1 974 806 857 ÷ 2 = 987 403 428 + 1;
- 987 403 428 ÷ 2 = 493 701 714 + 0;
- 493 701 714 ÷ 2 = 246 850 857 + 0;
- 246 850 857 ÷ 2 = 123 425 428 + 1;
- 123 425 428 ÷ 2 = 61 712 714 + 0;
- 61 712 714 ÷ 2 = 30 856 357 + 0;
- 30 856 357 ÷ 2 = 15 428 178 + 1;
- 15 428 178 ÷ 2 = 7 714 089 + 0;
- 7 714 089 ÷ 2 = 3 857 044 + 1;
- 3 857 044 ÷ 2 = 1 928 522 + 0;
- 1 928 522 ÷ 2 = 964 261 + 0;
- 964 261 ÷ 2 = 482 130 + 1;
- 482 130 ÷ 2 = 241 065 + 0;
- 241 065 ÷ 2 = 120 532 + 1;
- 120 532 ÷ 2 = 60 266 + 0;
- 60 266 ÷ 2 = 30 133 + 0;
- 30 133 ÷ 2 = 15 066 + 1;
- 15 066 ÷ 2 = 7 533 + 0;
- 7 533 ÷ 2 = 3 766 + 1;
- 3 766 ÷ 2 = 1 883 + 0;
- 1 883 ÷ 2 = 941 + 1;
- 941 ÷ 2 = 470 + 1;
- 470 ÷ 2 = 235 + 0;
- 235 ÷ 2 = 117 + 1;
- 117 ÷ 2 = 58 + 1;
- 58 ÷ 2 = 29 + 0;
- 29 ÷ 2 = 14 + 1;
- 14 ÷ 2 = 7 + 0;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 011 101 110 909(10) = 1110 1011 0110 1010 0101 0010 1001 0010 0111 1101(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 40.
A signed binary's bit length must be equal to a power of 2, as of:
21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
The first bit (the leftmost) indicates the sign:
0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 40,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Number 1 011 101 110 909(10), a signed integer number (with sign), converted from decimal system (from base 10) and written as a signed binary in two's complement representation:
Spaces were used to group digits: for binary, by 4, for decimal, by 3.