1. Divide the number repeatedly by 2:
Keep track of each remainder.
We stop when we get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 001 100 099 999 957 ÷ 2 = 500 550 049 999 978 + 1;
- 500 550 049 999 978 ÷ 2 = 250 275 024 999 989 + 0;
- 250 275 024 999 989 ÷ 2 = 125 137 512 499 994 + 1;
- 125 137 512 499 994 ÷ 2 = 62 568 756 249 997 + 0;
- 62 568 756 249 997 ÷ 2 = 31 284 378 124 998 + 1;
- 31 284 378 124 998 ÷ 2 = 15 642 189 062 499 + 0;
- 15 642 189 062 499 ÷ 2 = 7 821 094 531 249 + 1;
- 7 821 094 531 249 ÷ 2 = 3 910 547 265 624 + 1;
- 3 910 547 265 624 ÷ 2 = 1 955 273 632 812 + 0;
- 1 955 273 632 812 ÷ 2 = 977 636 816 406 + 0;
- 977 636 816 406 ÷ 2 = 488 818 408 203 + 0;
- 488 818 408 203 ÷ 2 = 244 409 204 101 + 1;
- 244 409 204 101 ÷ 2 = 122 204 602 050 + 1;
- 122 204 602 050 ÷ 2 = 61 102 301 025 + 0;
- 61 102 301 025 ÷ 2 = 30 551 150 512 + 1;
- 30 551 150 512 ÷ 2 = 15 275 575 256 + 0;
- 15 275 575 256 ÷ 2 = 7 637 787 628 + 0;
- 7 637 787 628 ÷ 2 = 3 818 893 814 + 0;
- 3 818 893 814 ÷ 2 = 1 909 446 907 + 0;
- 1 909 446 907 ÷ 2 = 954 723 453 + 1;
- 954 723 453 ÷ 2 = 477 361 726 + 1;
- 477 361 726 ÷ 2 = 238 680 863 + 0;
- 238 680 863 ÷ 2 = 119 340 431 + 1;
- 119 340 431 ÷ 2 = 59 670 215 + 1;
- 59 670 215 ÷ 2 = 29 835 107 + 1;
- 29 835 107 ÷ 2 = 14 917 553 + 1;
- 14 917 553 ÷ 2 = 7 458 776 + 1;
- 7 458 776 ÷ 2 = 3 729 388 + 0;
- 3 729 388 ÷ 2 = 1 864 694 + 0;
- 1 864 694 ÷ 2 = 932 347 + 0;
- 932 347 ÷ 2 = 466 173 + 1;
- 466 173 ÷ 2 = 233 086 + 1;
- 233 086 ÷ 2 = 116 543 + 0;
- 116 543 ÷ 2 = 58 271 + 1;
- 58 271 ÷ 2 = 29 135 + 1;
- 29 135 ÷ 2 = 14 567 + 1;
- 14 567 ÷ 2 = 7 283 + 1;
- 7 283 ÷ 2 = 3 641 + 1;
- 3 641 ÷ 2 = 1 820 + 1;
- 1 820 ÷ 2 = 910 + 0;
- 910 ÷ 2 = 455 + 0;
- 455 ÷ 2 = 227 + 1;
- 227 ÷ 2 = 113 + 1;
- 113 ÷ 2 = 56 + 1;
- 56 ÷ 2 = 28 + 0;
- 28 ÷ 2 = 14 + 0;
- 14 ÷ 2 = 7 + 0;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 001 100 099 999 957(10) = 11 1000 1110 0111 1110 1100 0111 1101 1000 0101 1000 1101 0101(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 50.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 50,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Decimal Number 1 001 100 099 999 957(10) converted to signed binary in two's complement representation:
Spaces were used to group digits: for binary, by 4, for decimal, by 3.