-99 999 999 989(10) to a signed binary two's complement representation = ?
1. Start with the positive version of the number:
|-99 999 999 989| = 99 999 999 989
2. Divide the number repeatedly by 2:
Keep track of each remainder.
We stop when we get a quotient that is equal to zero.
- division = quotient + remainder;
- 99 999 999 989 ÷ 2 = 49 999 999 994 + 1;
- 49 999 999 994 ÷ 2 = 24 999 999 997 + 0;
- 24 999 999 997 ÷ 2 = 12 499 999 998 + 1;
- 12 499 999 998 ÷ 2 = 6 249 999 999 + 0;
- 6 249 999 999 ÷ 2 = 3 124 999 999 + 1;
- 3 124 999 999 ÷ 2 = 1 562 499 999 + 1;
- 1 562 499 999 ÷ 2 = 781 249 999 + 1;
- 781 249 999 ÷ 2 = 390 624 999 + 1;
- 390 624 999 ÷ 2 = 195 312 499 + 1;
- 195 312 499 ÷ 2 = 97 656 249 + 1;
- 97 656 249 ÷ 2 = 48 828 124 + 1;
- 48 828 124 ÷ 2 = 24 414 062 + 0;
- 24 414 062 ÷ 2 = 12 207 031 + 0;
- 12 207 031 ÷ 2 = 6 103 515 + 1;
- 6 103 515 ÷ 2 = 3 051 757 + 1;
- 3 051 757 ÷ 2 = 1 525 878 + 1;
- 1 525 878 ÷ 2 = 762 939 + 0;
- 762 939 ÷ 2 = 381 469 + 1;
- 381 469 ÷ 2 = 190 734 + 1;
- 190 734 ÷ 2 = 95 367 + 0;
- 95 367 ÷ 2 = 47 683 + 1;
- 47 683 ÷ 2 = 23 841 + 1;
- 23 841 ÷ 2 = 11 920 + 1;
- 11 920 ÷ 2 = 5 960 + 0;
- 5 960 ÷ 2 = 2 980 + 0;
- 2 980 ÷ 2 = 1 490 + 0;
- 1 490 ÷ 2 = 745 + 0;
- 745 ÷ 2 = 372 + 1;
- 372 ÷ 2 = 186 + 0;
- 186 ÷ 2 = 93 + 0;
- 93 ÷ 2 = 46 + 1;
- 46 ÷ 2 = 23 + 0;
- 23 ÷ 2 = 11 + 1;
- 11 ÷ 2 = 5 + 1;
- 5 ÷ 2 = 2 + 1;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
3. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
99 999 999 989(10) = 1 0111 0100 1000 0111 0110 1110 0111 1111 0101(2)
4. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 37.
A signed binary's bit length must be equal to a power of 2, as of:
21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
The least number that is:
a power of 2
and is larger than the actual length, 37,
so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
is: 64.
5. Positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:
99 999 999 989(10) = 0000 0000 0000 0000 0000 0000 0001 0111 0100 1000 0111 0110 1110 0111 1111 0101
6. Get the negative integer number representation. Part 1:
To get the negative integer number representation on 64 bits (8 Bytes),
signed binary one's complement,
replace all the bits on 0 with 1s
and all the bits set on 1 with 0s
(reverse the digits, flip the digits)
!(0000 0000 0000 0000 0000 0000 0001 0111 0100 1000 0111 0110 1110 0111 1111 0101) =
1111 1111 1111 1111 1111 1111 1110 1000 1011 0111 1000 1001 0001 1000 0000 1010
7. Get the negative integer number representation. Part 2:
To get the negative integer number representation on 64 bits (8 Bytes),
signed binary two's complement,
add 1 to the number calculated above
1111 1111 1111 1111 1111 1111 1110 1000 1011 0111 1000 1001 0001 1000 0000 1010 + 1 =
1111 1111 1111 1111 1111 1111 1110 1000 1011 0111 1000 1001 0001 1000 0000 1011
Number -99 999 999 989, a signed integer, converted from decimal system (base 10) to a signed binary two's complement representation:
-99 999 999 989(10) = 1111 1111 1111 1111 1111 1111 1110 1000 1011 0111 1000 1001 0001 1000 0000 1011
Spaces used to group digits: for binary, by 4; for decimal, by 3.
More operations of this kind:
Convert signed integer numbers from the decimal system (base ten) to signed binary two's complement representation