One's Complement: Integer -> Binary: 496 916 632 435 730 664 Convert the Integer Number to a Signed Binary in One's Complement Representation. Write the Base Ten Decimal System Number as a Binary Code (Written in Base Two)
Signed integer number 496 916 632 435 730 664(10) converted and written as a signed binary in one's complement representation (base 2) = ?
1. Divide the number repeatedly by 2:
Keep track of each remainder.
We stop when we get a quotient that is equal to zero.
- division = quotient + remainder;
- 496 916 632 435 730 664 ÷ 2 = 248 458 316 217 865 332 + 0;
- 248 458 316 217 865 332 ÷ 2 = 124 229 158 108 932 666 + 0;
- 124 229 158 108 932 666 ÷ 2 = 62 114 579 054 466 333 + 0;
- 62 114 579 054 466 333 ÷ 2 = 31 057 289 527 233 166 + 1;
- 31 057 289 527 233 166 ÷ 2 = 15 528 644 763 616 583 + 0;
- 15 528 644 763 616 583 ÷ 2 = 7 764 322 381 808 291 + 1;
- 7 764 322 381 808 291 ÷ 2 = 3 882 161 190 904 145 + 1;
- 3 882 161 190 904 145 ÷ 2 = 1 941 080 595 452 072 + 1;
- 1 941 080 595 452 072 ÷ 2 = 970 540 297 726 036 + 0;
- 970 540 297 726 036 ÷ 2 = 485 270 148 863 018 + 0;
- 485 270 148 863 018 ÷ 2 = 242 635 074 431 509 + 0;
- 242 635 074 431 509 ÷ 2 = 121 317 537 215 754 + 1;
- 121 317 537 215 754 ÷ 2 = 60 658 768 607 877 + 0;
- 60 658 768 607 877 ÷ 2 = 30 329 384 303 938 + 1;
- 30 329 384 303 938 ÷ 2 = 15 164 692 151 969 + 0;
- 15 164 692 151 969 ÷ 2 = 7 582 346 075 984 + 1;
- 7 582 346 075 984 ÷ 2 = 3 791 173 037 992 + 0;
- 3 791 173 037 992 ÷ 2 = 1 895 586 518 996 + 0;
- 1 895 586 518 996 ÷ 2 = 947 793 259 498 + 0;
- 947 793 259 498 ÷ 2 = 473 896 629 749 + 0;
- 473 896 629 749 ÷ 2 = 236 948 314 874 + 1;
- 236 948 314 874 ÷ 2 = 118 474 157 437 + 0;
- 118 474 157 437 ÷ 2 = 59 237 078 718 + 1;
- 59 237 078 718 ÷ 2 = 29 618 539 359 + 0;
- 29 618 539 359 ÷ 2 = 14 809 269 679 + 1;
- 14 809 269 679 ÷ 2 = 7 404 634 839 + 1;
- 7 404 634 839 ÷ 2 = 3 702 317 419 + 1;
- 3 702 317 419 ÷ 2 = 1 851 158 709 + 1;
- 1 851 158 709 ÷ 2 = 925 579 354 + 1;
- 925 579 354 ÷ 2 = 462 789 677 + 0;
- 462 789 677 ÷ 2 = 231 394 838 + 1;
- 231 394 838 ÷ 2 = 115 697 419 + 0;
- 115 697 419 ÷ 2 = 57 848 709 + 1;
- 57 848 709 ÷ 2 = 28 924 354 + 1;
- 28 924 354 ÷ 2 = 14 462 177 + 0;
- 14 462 177 ÷ 2 = 7 231 088 + 1;
- 7 231 088 ÷ 2 = 3 615 544 + 0;
- 3 615 544 ÷ 2 = 1 807 772 + 0;
- 1 807 772 ÷ 2 = 903 886 + 0;
- 903 886 ÷ 2 = 451 943 + 0;
- 451 943 ÷ 2 = 225 971 + 1;
- 225 971 ÷ 2 = 112 985 + 1;
- 112 985 ÷ 2 = 56 492 + 1;
- 56 492 ÷ 2 = 28 246 + 0;
- 28 246 ÷ 2 = 14 123 + 0;
- 14 123 ÷ 2 = 7 061 + 1;
- 7 061 ÷ 2 = 3 530 + 1;
- 3 530 ÷ 2 = 1 765 + 0;
- 1 765 ÷ 2 = 882 + 1;
- 882 ÷ 2 = 441 + 0;
- 441 ÷ 2 = 220 + 1;
- 220 ÷ 2 = 110 + 0;
- 110 ÷ 2 = 55 + 0;
- 55 ÷ 2 = 27 + 1;
- 27 ÷ 2 = 13 + 1;
- 13 ÷ 2 = 6 + 1;
- 6 ÷ 2 = 3 + 0;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
496 916 632 435 730 664(10) = 110 1110 0101 0110 0111 0000 1011 0101 1111 0101 0000 1010 1000 1110 1000(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 59.
A signed binary's bit length must be equal to a power of 2, as of:
21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
The first bit (the leftmost) indicates the sign:
0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 59,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Number 496 916 632 435 730 664(10), a signed integer number (with sign), converted from decimal system (from base 10) and written as a signed binary in one's complement representation:
496 916 632 435 730 664(10) = 0000 0110 1110 0101 0110 0111 0000 1011 0101 1111 0101 0000 1010 1000 1110 1000
Spaces were used to group digits: for binary, by 4, for decimal, by 3.
Convert signed integer numbers from the decimal system (base ten) to signed binary in one's complement representation
How to convert a base 10 signed integer number to signed binary in one's complement representation:
1) Divide the positive version of the number repeatedly by 2, keeping track of each remainder, till getting a quotient that is 0.
2) Construct the base 2 representation by taking the previously calculated remainders starting from the last remainder up to the first one, in that order.
3) Construct the positive binary computer representation so that the first bit is 0.
4) Only if the initial number is negative, switch all the bits from 0 to 1 and from 1 to 0 (reversing the digits).