1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 123 456 789 012 313 ÷ 2 = 61 728 394 506 156 + 1;
- 61 728 394 506 156 ÷ 2 = 30 864 197 253 078 + 0;
- 30 864 197 253 078 ÷ 2 = 15 432 098 626 539 + 0;
- 15 432 098 626 539 ÷ 2 = 7 716 049 313 269 + 1;
- 7 716 049 313 269 ÷ 2 = 3 858 024 656 634 + 1;
- 3 858 024 656 634 ÷ 2 = 1 929 012 328 317 + 0;
- 1 929 012 328 317 ÷ 2 = 964 506 164 158 + 1;
- 964 506 164 158 ÷ 2 = 482 253 082 079 + 0;
- 482 253 082 079 ÷ 2 = 241 126 541 039 + 1;
- 241 126 541 039 ÷ 2 = 120 563 270 519 + 1;
- 120 563 270 519 ÷ 2 = 60 281 635 259 + 1;
- 60 281 635 259 ÷ 2 = 30 140 817 629 + 1;
- 30 140 817 629 ÷ 2 = 15 070 408 814 + 1;
- 15 070 408 814 ÷ 2 = 7 535 204 407 + 0;
- 7 535 204 407 ÷ 2 = 3 767 602 203 + 1;
- 3 767 602 203 ÷ 2 = 1 883 801 101 + 1;
- 1 883 801 101 ÷ 2 = 941 900 550 + 1;
- 941 900 550 ÷ 2 = 470 950 275 + 0;
- 470 950 275 ÷ 2 = 235 475 137 + 1;
- 235 475 137 ÷ 2 = 117 737 568 + 1;
- 117 737 568 ÷ 2 = 58 868 784 + 0;
- 58 868 784 ÷ 2 = 29 434 392 + 0;
- 29 434 392 ÷ 2 = 14 717 196 + 0;
- 14 717 196 ÷ 2 = 7 358 598 + 0;
- 7 358 598 ÷ 2 = 3 679 299 + 0;
- 3 679 299 ÷ 2 = 1 839 649 + 1;
- 1 839 649 ÷ 2 = 919 824 + 1;
- 919 824 ÷ 2 = 459 912 + 0;
- 459 912 ÷ 2 = 229 956 + 0;
- 229 956 ÷ 2 = 114 978 + 0;
- 114 978 ÷ 2 = 57 489 + 0;
- 57 489 ÷ 2 = 28 744 + 1;
- 28 744 ÷ 2 = 14 372 + 0;
- 14 372 ÷ 2 = 7 186 + 0;
- 7 186 ÷ 2 = 3 593 + 0;
- 3 593 ÷ 2 = 1 796 + 1;
- 1 796 ÷ 2 = 898 + 0;
- 898 ÷ 2 = 449 + 0;
- 449 ÷ 2 = 224 + 1;
- 224 ÷ 2 = 112 + 0;
- 112 ÷ 2 = 56 + 0;
- 56 ÷ 2 = 28 + 0;
- 28 ÷ 2 = 14 + 0;
- 14 ÷ 2 = 7 + 0;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
123 456 789 012 313(10) = 111 0000 0100 1000 1000 0110 0000 1101 1101 1111 0101 1001(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 47.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 47,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Number 123 456 789 012 313(10), a signed integer number (with sign), converted from decimal system (from base 10) and written as a signed binary in one's complement representation: