1. Divide the number repeatedly by 2:
Keep track of each remainder.
We stop when we get a quotient that is equal to zero.
- division = quotient + remainder;
- 11 111 111 110 000 025 ÷ 2 = 5 555 555 555 000 012 + 1;
- 5 555 555 555 000 012 ÷ 2 = 2 777 777 777 500 006 + 0;
- 2 777 777 777 500 006 ÷ 2 = 1 388 888 888 750 003 + 0;
- 1 388 888 888 750 003 ÷ 2 = 694 444 444 375 001 + 1;
- 694 444 444 375 001 ÷ 2 = 347 222 222 187 500 + 1;
- 347 222 222 187 500 ÷ 2 = 173 611 111 093 750 + 0;
- 173 611 111 093 750 ÷ 2 = 86 805 555 546 875 + 0;
- 86 805 555 546 875 ÷ 2 = 43 402 777 773 437 + 1;
- 43 402 777 773 437 ÷ 2 = 21 701 388 886 718 + 1;
- 21 701 388 886 718 ÷ 2 = 10 850 694 443 359 + 0;
- 10 850 694 443 359 ÷ 2 = 5 425 347 221 679 + 1;
- 5 425 347 221 679 ÷ 2 = 2 712 673 610 839 + 1;
- 2 712 673 610 839 ÷ 2 = 1 356 336 805 419 + 1;
- 1 356 336 805 419 ÷ 2 = 678 168 402 709 + 1;
- 678 168 402 709 ÷ 2 = 339 084 201 354 + 1;
- 339 084 201 354 ÷ 2 = 169 542 100 677 + 0;
- 169 542 100 677 ÷ 2 = 84 771 050 338 + 1;
- 84 771 050 338 ÷ 2 = 42 385 525 169 + 0;
- 42 385 525 169 ÷ 2 = 21 192 762 584 + 1;
- 21 192 762 584 ÷ 2 = 10 596 381 292 + 0;
- 10 596 381 292 ÷ 2 = 5 298 190 646 + 0;
- 5 298 190 646 ÷ 2 = 2 649 095 323 + 0;
- 2 649 095 323 ÷ 2 = 1 324 547 661 + 1;
- 1 324 547 661 ÷ 2 = 662 273 830 + 1;
- 662 273 830 ÷ 2 = 331 136 915 + 0;
- 331 136 915 ÷ 2 = 165 568 457 + 1;
- 165 568 457 ÷ 2 = 82 784 228 + 1;
- 82 784 228 ÷ 2 = 41 392 114 + 0;
- 41 392 114 ÷ 2 = 20 696 057 + 0;
- 20 696 057 ÷ 2 = 10 348 028 + 1;
- 10 348 028 ÷ 2 = 5 174 014 + 0;
- 5 174 014 ÷ 2 = 2 587 007 + 0;
- 2 587 007 ÷ 2 = 1 293 503 + 1;
- 1 293 503 ÷ 2 = 646 751 + 1;
- 646 751 ÷ 2 = 323 375 + 1;
- 323 375 ÷ 2 = 161 687 + 1;
- 161 687 ÷ 2 = 80 843 + 1;
- 80 843 ÷ 2 = 40 421 + 1;
- 40 421 ÷ 2 = 20 210 + 1;
- 20 210 ÷ 2 = 10 105 + 0;
- 10 105 ÷ 2 = 5 052 + 1;
- 5 052 ÷ 2 = 2 526 + 0;
- 2 526 ÷ 2 = 1 263 + 0;
- 1 263 ÷ 2 = 631 + 1;
- 631 ÷ 2 = 315 + 1;
- 315 ÷ 2 = 157 + 1;
- 157 ÷ 2 = 78 + 1;
- 78 ÷ 2 = 39 + 0;
- 39 ÷ 2 = 19 + 1;
- 19 ÷ 2 = 9 + 1;
- 9 ÷ 2 = 4 + 1;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
11 111 111 110 000 025(10) = 10 0111 0111 1001 0111 1111 0010 0110 1100 0101 0111 1101 1001 1001(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 54.
A signed binary's bit length must be equal to a power of 2, as of:
21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
The first bit (the leftmost) indicates the sign:
0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 54,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Number 11 111 111 110 000 025(10), a signed integer number (with sign), converted from decimal system (from base 10) and written as a signed binary in one's complement representation:
11 111 111 110 000 025(10) = 0000 0000 0010 0111 0111 1001 0111 1111 0010 0110 1100 0101 0111 1101 1001 1001
Spaces were used to group digits: for binary, by 4, for decimal, by 3.