1. Divide the number repeatedly by 2:
Keep track of each remainder.
We stop when we get a quotient that is equal to zero.
- division = quotient + remainder;
- 101 100 101 080 ÷ 2 = 50 550 050 540 + 0;
- 50 550 050 540 ÷ 2 = 25 275 025 270 + 0;
- 25 275 025 270 ÷ 2 = 12 637 512 635 + 0;
- 12 637 512 635 ÷ 2 = 6 318 756 317 + 1;
- 6 318 756 317 ÷ 2 = 3 159 378 158 + 1;
- 3 159 378 158 ÷ 2 = 1 579 689 079 + 0;
- 1 579 689 079 ÷ 2 = 789 844 539 + 1;
- 789 844 539 ÷ 2 = 394 922 269 + 1;
- 394 922 269 ÷ 2 = 197 461 134 + 1;
- 197 461 134 ÷ 2 = 98 730 567 + 0;
- 98 730 567 ÷ 2 = 49 365 283 + 1;
- 49 365 283 ÷ 2 = 24 682 641 + 1;
- 24 682 641 ÷ 2 = 12 341 320 + 1;
- 12 341 320 ÷ 2 = 6 170 660 + 0;
- 6 170 660 ÷ 2 = 3 085 330 + 0;
- 3 085 330 ÷ 2 = 1 542 665 + 0;
- 1 542 665 ÷ 2 = 771 332 + 1;
- 771 332 ÷ 2 = 385 666 + 0;
- 385 666 ÷ 2 = 192 833 + 0;
- 192 833 ÷ 2 = 96 416 + 1;
- 96 416 ÷ 2 = 48 208 + 0;
- 48 208 ÷ 2 = 24 104 + 0;
- 24 104 ÷ 2 = 12 052 + 0;
- 12 052 ÷ 2 = 6 026 + 0;
- 6 026 ÷ 2 = 3 013 + 0;
- 3 013 ÷ 2 = 1 506 + 1;
- 1 506 ÷ 2 = 753 + 0;
- 753 ÷ 2 = 376 + 1;
- 376 ÷ 2 = 188 + 0;
- 188 ÷ 2 = 94 + 0;
- 94 ÷ 2 = 47 + 0;
- 47 ÷ 2 = 23 + 1;
- 23 ÷ 2 = 11 + 1;
- 11 ÷ 2 = 5 + 1;
- 5 ÷ 2 = 2 + 1;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
101 100 101 080(10) = 1 0111 1000 1010 0000 1001 0001 1101 1101 1000(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 37.
A signed binary's bit length must be equal to a power of 2, as of:
21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
The first bit (the leftmost) indicates the sign:
0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 37,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Number 101 100 101 080(10), a signed integer number (with sign), converted from decimal system (from base 10) and written as a signed binary in one's complement representation:
101 100 101 080(10) = 0000 0000 0000 0000 0000 0000 0001 0111 1000 1010 0000 1001 0001 1101 1101 1000
Spaces were used to group digits: for binary, by 4, for decimal, by 3.