1. Divide the number repeatedly by 2:
Keep track of each remainder.
We stop when we get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 011 000 011 110 179 ÷ 2 = 505 500 005 555 089 + 1;
- 505 500 005 555 089 ÷ 2 = 252 750 002 777 544 + 1;
- 252 750 002 777 544 ÷ 2 = 126 375 001 388 772 + 0;
- 126 375 001 388 772 ÷ 2 = 63 187 500 694 386 + 0;
- 63 187 500 694 386 ÷ 2 = 31 593 750 347 193 + 0;
- 31 593 750 347 193 ÷ 2 = 15 796 875 173 596 + 1;
- 15 796 875 173 596 ÷ 2 = 7 898 437 586 798 + 0;
- 7 898 437 586 798 ÷ 2 = 3 949 218 793 399 + 0;
- 3 949 218 793 399 ÷ 2 = 1 974 609 396 699 + 1;
- 1 974 609 396 699 ÷ 2 = 987 304 698 349 + 1;
- 987 304 698 349 ÷ 2 = 493 652 349 174 + 1;
- 493 652 349 174 ÷ 2 = 246 826 174 587 + 0;
- 246 826 174 587 ÷ 2 = 123 413 087 293 + 1;
- 123 413 087 293 ÷ 2 = 61 706 543 646 + 1;
- 61 706 543 646 ÷ 2 = 30 853 271 823 + 0;
- 30 853 271 823 ÷ 2 = 15 426 635 911 + 1;
- 15 426 635 911 ÷ 2 = 7 713 317 955 + 1;
- 7 713 317 955 ÷ 2 = 3 856 658 977 + 1;
- 3 856 658 977 ÷ 2 = 1 928 329 488 + 1;
- 1 928 329 488 ÷ 2 = 964 164 744 + 0;
- 964 164 744 ÷ 2 = 482 082 372 + 0;
- 482 082 372 ÷ 2 = 241 041 186 + 0;
- 241 041 186 ÷ 2 = 120 520 593 + 0;
- 120 520 593 ÷ 2 = 60 260 296 + 1;
- 60 260 296 ÷ 2 = 30 130 148 + 0;
- 30 130 148 ÷ 2 = 15 065 074 + 0;
- 15 065 074 ÷ 2 = 7 532 537 + 0;
- 7 532 537 ÷ 2 = 3 766 268 + 1;
- 3 766 268 ÷ 2 = 1 883 134 + 0;
- 1 883 134 ÷ 2 = 941 567 + 0;
- 941 567 ÷ 2 = 470 783 + 1;
- 470 783 ÷ 2 = 235 391 + 1;
- 235 391 ÷ 2 = 117 695 + 1;
- 117 695 ÷ 2 = 58 847 + 1;
- 58 847 ÷ 2 = 29 423 + 1;
- 29 423 ÷ 2 = 14 711 + 1;
- 14 711 ÷ 2 = 7 355 + 1;
- 7 355 ÷ 2 = 3 677 + 1;
- 3 677 ÷ 2 = 1 838 + 1;
- 1 838 ÷ 2 = 919 + 0;
- 919 ÷ 2 = 459 + 1;
- 459 ÷ 2 = 229 + 1;
- 229 ÷ 2 = 114 + 1;
- 114 ÷ 2 = 57 + 0;
- 57 ÷ 2 = 28 + 1;
- 28 ÷ 2 = 14 + 0;
- 14 ÷ 2 = 7 + 0;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 011 000 011 110 179(10) = 11 1001 0111 0111 1111 1100 1000 1000 0111 1011 0111 0010 0011(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 50.
A signed binary's bit length must be equal to a power of 2, as of:
21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
The first bit (the leftmost) indicates the sign:
0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 50,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.
Number 1 011 000 011 110 179(10), a signed integer number (with sign), converted from decimal system (from base 10) and written as a signed binary in one's complement representation:
1 011 000 011 110 179(10) = 0000 0000 0000 0011 1001 0111 0111 1111 1100 1000 1000 0111 1011 0111 0010 0011
Spaces were used to group digits: for binary, by 4, for decimal, by 3.