1. Start with the positive version of the number:
|-2 147 483 767| = 2 147 483 767
2. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 2 147 483 767 ÷ 2 = 1 073 741 883 + 1;
- 1 073 741 883 ÷ 2 = 536 870 941 + 1;
- 536 870 941 ÷ 2 = 268 435 470 + 1;
- 268 435 470 ÷ 2 = 134 217 735 + 0;
- 134 217 735 ÷ 2 = 67 108 867 + 1;
- 67 108 867 ÷ 2 = 33 554 433 + 1;
- 33 554 433 ÷ 2 = 16 777 216 + 1;
- 16 777 216 ÷ 2 = 8 388 608 + 0;
- 8 388 608 ÷ 2 = 4 194 304 + 0;
- 4 194 304 ÷ 2 = 2 097 152 + 0;
- 2 097 152 ÷ 2 = 1 048 576 + 0;
- 1 048 576 ÷ 2 = 524 288 + 0;
- 524 288 ÷ 2 = 262 144 + 0;
- 262 144 ÷ 2 = 131 072 + 0;
- 131 072 ÷ 2 = 65 536 + 0;
- 65 536 ÷ 2 = 32 768 + 0;
- 32 768 ÷ 2 = 16 384 + 0;
- 16 384 ÷ 2 = 8 192 + 0;
- 8 192 ÷ 2 = 4 096 + 0;
- 4 096 ÷ 2 = 2 048 + 0;
- 2 048 ÷ 2 = 1 024 + 0;
- 1 024 ÷ 2 = 512 + 0;
- 512 ÷ 2 = 256 + 0;
- 256 ÷ 2 = 128 + 0;
- 128 ÷ 2 = 64 + 0;
- 64 ÷ 2 = 32 + 0;
- 32 ÷ 2 = 16 + 0;
- 16 ÷ 2 = 8 + 0;
- 8 ÷ 2 = 4 + 0;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
3. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
2 147 483 767(10) = 1000 0000 0000 0000 0000 0000 0111 0111(2)
4. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 32.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) indicates the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 32,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
5. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64.