What are the required steps to convert base 10 decimal system
number 5 001 121 198 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 5 001 121 198 ÷ 2 = 2 500 560 599 + 0;
- 2 500 560 599 ÷ 2 = 1 250 280 299 + 1;
- 1 250 280 299 ÷ 2 = 625 140 149 + 1;
- 625 140 149 ÷ 2 = 312 570 074 + 1;
- 312 570 074 ÷ 2 = 156 285 037 + 0;
- 156 285 037 ÷ 2 = 78 142 518 + 1;
- 78 142 518 ÷ 2 = 39 071 259 + 0;
- 39 071 259 ÷ 2 = 19 535 629 + 1;
- 19 535 629 ÷ 2 = 9 767 814 + 1;
- 9 767 814 ÷ 2 = 4 883 907 + 0;
- 4 883 907 ÷ 2 = 2 441 953 + 1;
- 2 441 953 ÷ 2 = 1 220 976 + 1;
- 1 220 976 ÷ 2 = 610 488 + 0;
- 610 488 ÷ 2 = 305 244 + 0;
- 305 244 ÷ 2 = 152 622 + 0;
- 152 622 ÷ 2 = 76 311 + 0;
- 76 311 ÷ 2 = 38 155 + 1;
- 38 155 ÷ 2 = 19 077 + 1;
- 19 077 ÷ 2 = 9 538 + 1;
- 9 538 ÷ 2 = 4 769 + 0;
- 4 769 ÷ 2 = 2 384 + 1;
- 2 384 ÷ 2 = 1 192 + 0;
- 1 192 ÷ 2 = 596 + 0;
- 596 ÷ 2 = 298 + 0;
- 298 ÷ 2 = 149 + 0;
- 149 ÷ 2 = 74 + 1;
- 74 ÷ 2 = 37 + 0;
- 37 ÷ 2 = 18 + 1;
- 18 ÷ 2 = 9 + 0;
- 9 ÷ 2 = 4 + 1;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
5 001 121 198(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
5 001 121 198 (base 10) = 1 0010 1010 0001 0111 0000 1101 1010 1110 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.