What are the required steps to convert base 10 decimal system
number 2 147 483 647 730 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 2 147 483 647 730 ÷ 2 = 1 073 741 823 865 + 0;
- 1 073 741 823 865 ÷ 2 = 536 870 911 932 + 1;
- 536 870 911 932 ÷ 2 = 268 435 455 966 + 0;
- 268 435 455 966 ÷ 2 = 134 217 727 983 + 0;
- 134 217 727 983 ÷ 2 = 67 108 863 991 + 1;
- 67 108 863 991 ÷ 2 = 33 554 431 995 + 1;
- 33 554 431 995 ÷ 2 = 16 777 215 997 + 1;
- 16 777 215 997 ÷ 2 = 8 388 607 998 + 1;
- 8 388 607 998 ÷ 2 = 4 194 303 999 + 0;
- 4 194 303 999 ÷ 2 = 2 097 151 999 + 1;
- 2 097 151 999 ÷ 2 = 1 048 575 999 + 1;
- 1 048 575 999 ÷ 2 = 524 287 999 + 1;
- 524 287 999 ÷ 2 = 262 143 999 + 1;
- 262 143 999 ÷ 2 = 131 071 999 + 1;
- 131 071 999 ÷ 2 = 65 535 999 + 1;
- 65 535 999 ÷ 2 = 32 767 999 + 1;
- 32 767 999 ÷ 2 = 16 383 999 + 1;
- 16 383 999 ÷ 2 = 8 191 999 + 1;
- 8 191 999 ÷ 2 = 4 095 999 + 1;
- 4 095 999 ÷ 2 = 2 047 999 + 1;
- 2 047 999 ÷ 2 = 1 023 999 + 1;
- 1 023 999 ÷ 2 = 511 999 + 1;
- 511 999 ÷ 2 = 255 999 + 1;
- 255 999 ÷ 2 = 127 999 + 1;
- 127 999 ÷ 2 = 63 999 + 1;
- 63 999 ÷ 2 = 31 999 + 1;
- 31 999 ÷ 2 = 15 999 + 1;
- 15 999 ÷ 2 = 7 999 + 1;
- 7 999 ÷ 2 = 3 999 + 1;
- 3 999 ÷ 2 = 1 999 + 1;
- 1 999 ÷ 2 = 999 + 1;
- 999 ÷ 2 = 499 + 1;
- 499 ÷ 2 = 249 + 1;
- 249 ÷ 2 = 124 + 1;
- 124 ÷ 2 = 62 + 0;
- 62 ÷ 2 = 31 + 0;
- 31 ÷ 2 = 15 + 1;
- 15 ÷ 2 = 7 + 1;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
2 147 483 647 730(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
2 147 483 647 730 (base 10) = 1 1111 0011 1111 1111 1111 1111 1111 1110 1111 0010 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.