# Unsigned: Integer -> Binary: 19 216 810 063 Convert the Positive Integer (Whole Number) From Base Ten (10) To Base Two (2), Conversion and Writing of Decimal System Number as Unsigned Binary Code

## Unsigned (positive) integer number 19 216 810 063(10) converted and written as an unsigned binary (base 2) = ?

### 1. Divide the number repeatedly by 2:

#### We stop when we get a quotient that is equal to zero.

• division = quotient + remainder;
• 19 216 810 063 ÷ 2 = 9 608 405 031 + 1;
• 9 608 405 031 ÷ 2 = 4 804 202 515 + 1;
• 4 804 202 515 ÷ 2 = 2 402 101 257 + 1;
• 2 402 101 257 ÷ 2 = 1 201 050 628 + 1;
• 1 201 050 628 ÷ 2 = 600 525 314 + 0;
• 600 525 314 ÷ 2 = 300 262 657 + 0;
• 300 262 657 ÷ 2 = 150 131 328 + 1;
• 150 131 328 ÷ 2 = 75 065 664 + 0;
• 75 065 664 ÷ 2 = 37 532 832 + 0;
• 37 532 832 ÷ 2 = 18 766 416 + 0;
• 18 766 416 ÷ 2 = 9 383 208 + 0;
• 9 383 208 ÷ 2 = 4 691 604 + 0;
• 4 691 604 ÷ 2 = 2 345 802 + 0;
• 2 345 802 ÷ 2 = 1 172 901 + 0;
• 1 172 901 ÷ 2 = 586 450 + 1;
• 586 450 ÷ 2 = 293 225 + 0;
• 293 225 ÷ 2 = 146 612 + 1;
• 146 612 ÷ 2 = 73 306 + 0;
• 73 306 ÷ 2 = 36 653 + 0;
• 36 653 ÷ 2 = 18 326 + 1;
• 18 326 ÷ 2 = 9 163 + 0;
• 9 163 ÷ 2 = 4 581 + 1;
• 4 581 ÷ 2 = 2 290 + 1;
• 2 290 ÷ 2 = 1 145 + 0;
• 1 145 ÷ 2 = 572 + 1;
• 572 ÷ 2 = 286 + 0;
• 286 ÷ 2 = 143 + 0;
• 143 ÷ 2 = 71 + 1;
• 71 ÷ 2 = 35 + 1;
• 35 ÷ 2 = 17 + 1;
• 17 ÷ 2 = 8 + 1;
• 8 ÷ 2 = 4 + 0;
• 4 ÷ 2 = 2 + 0;
• 2 ÷ 2 = 1 + 0;
• 1 ÷ 2 = 0 + 1;

## How to convert unsigned integer numbers (positive) from decimal system (base 10) to binary = simply convert from base ten to base two

### Follow the steps below to convert a base ten unsigned integer number to base two:

• 1. Divide repeatedly by 2 the positive integer number that has to be converted to binary, keeping track of each remainder, until we get a QUOTIENT that is equal to ZERO.
• 2. Construct the base 2 representation of the positive integer number, by taking all the remainders starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).

### Example: convert the positive integer number 55 from decimal system (base ten) to binary code (base two):

• 1. Divide repeatedly 55 by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
• division = quotient + remainder;
• 55 ÷ 2 = 27 + 1;
• 27 ÷ 2 = 13 + 1;
• 13 ÷ 2 = 6 + 1;
• 6 ÷ 2 = 3 + 0;
• 3 ÷ 2 = 1 + 1;
• 1 ÷ 2 = 0 + 1;
• 2. Construct the base 2 representation of the positive integer number, by taking all the remainders starting from the bottom of the list constructed above:
55(10) = 11 0111(2)