What are the required steps to convert base 10 decimal system
number 1 431 699 410 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 431 699 410 ÷ 2 = 715 849 705 + 0;
- 715 849 705 ÷ 2 = 357 924 852 + 1;
- 357 924 852 ÷ 2 = 178 962 426 + 0;
- 178 962 426 ÷ 2 = 89 481 213 + 0;
- 89 481 213 ÷ 2 = 44 740 606 + 1;
- 44 740 606 ÷ 2 = 22 370 303 + 0;
- 22 370 303 ÷ 2 = 11 185 151 + 1;
- 11 185 151 ÷ 2 = 5 592 575 + 1;
- 5 592 575 ÷ 2 = 2 796 287 + 1;
- 2 796 287 ÷ 2 = 1 398 143 + 1;
- 1 398 143 ÷ 2 = 699 071 + 1;
- 699 071 ÷ 2 = 349 535 + 1;
- 349 535 ÷ 2 = 174 767 + 1;
- 174 767 ÷ 2 = 87 383 + 1;
- 87 383 ÷ 2 = 43 691 + 1;
- 43 691 ÷ 2 = 21 845 + 1;
- 21 845 ÷ 2 = 10 922 + 1;
- 10 922 ÷ 2 = 5 461 + 0;
- 5 461 ÷ 2 = 2 730 + 1;
- 2 730 ÷ 2 = 1 365 + 0;
- 1 365 ÷ 2 = 682 + 1;
- 682 ÷ 2 = 341 + 0;
- 341 ÷ 2 = 170 + 1;
- 170 ÷ 2 = 85 + 0;
- 85 ÷ 2 = 42 + 1;
- 42 ÷ 2 = 21 + 0;
- 21 ÷ 2 = 10 + 1;
- 10 ÷ 2 = 5 + 0;
- 5 ÷ 2 = 2 + 1;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 431 699 410(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
1 431 699 410 (base 10) = 101 0101 0101 0101 1111 1111 1101 0010 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.