Base Ten to Base Two: Unsigned Number 1 111 111 101 011 070 Converted and Written in Base Two. Natural Number (Positive Integer, No Sign) Converted From Decimal System to Binary Code

Base ten unsigned number 1 111 111 101 011 070(10) converted and written as a base two binary code

1. Divide the number repeatedly by 2:

Keep track of each remainder.

Stop when getting a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 111 111 101 011 070 ÷ 2 = 555 555 550 505 535 + 0;
  • 555 555 550 505 535 ÷ 2 = 277 777 775 252 767 + 1;
  • 277 777 775 252 767 ÷ 2 = 138 888 887 626 383 + 1;
  • 138 888 887 626 383 ÷ 2 = 69 444 443 813 191 + 1;
  • 69 444 443 813 191 ÷ 2 = 34 722 221 906 595 + 1;
  • 34 722 221 906 595 ÷ 2 = 17 361 110 953 297 + 1;
  • 17 361 110 953 297 ÷ 2 = 8 680 555 476 648 + 1;
  • 8 680 555 476 648 ÷ 2 = 4 340 277 738 324 + 0;
  • 4 340 277 738 324 ÷ 2 = 2 170 138 869 162 + 0;
  • 2 170 138 869 162 ÷ 2 = 1 085 069 434 581 + 0;
  • 1 085 069 434 581 ÷ 2 = 542 534 717 290 + 1;
  • 542 534 717 290 ÷ 2 = 271 267 358 645 + 0;
  • 271 267 358 645 ÷ 2 = 135 633 679 322 + 1;
  • 135 633 679 322 ÷ 2 = 67 816 839 661 + 0;
  • 67 816 839 661 ÷ 2 = 33 908 419 830 + 1;
  • 33 908 419 830 ÷ 2 = 16 954 209 915 + 0;
  • 16 954 209 915 ÷ 2 = 8 477 104 957 + 1;
  • 8 477 104 957 ÷ 2 = 4 238 552 478 + 1;
  • 4 238 552 478 ÷ 2 = 2 119 276 239 + 0;
  • 2 119 276 239 ÷ 2 = 1 059 638 119 + 1;
  • 1 059 638 119 ÷ 2 = 529 819 059 + 1;
  • 529 819 059 ÷ 2 = 264 909 529 + 1;
  • 264 909 529 ÷ 2 = 132 454 764 + 1;
  • 132 454 764 ÷ 2 = 66 227 382 + 0;
  • 66 227 382 ÷ 2 = 33 113 691 + 0;
  • 33 113 691 ÷ 2 = 16 556 845 + 1;
  • 16 556 845 ÷ 2 = 8 278 422 + 1;
  • 8 278 422 ÷ 2 = 4 139 211 + 0;
  • 4 139 211 ÷ 2 = 2 069 605 + 1;
  • 2 069 605 ÷ 2 = 1 034 802 + 1;
  • 1 034 802 ÷ 2 = 517 401 + 0;
  • 517 401 ÷ 2 = 258 700 + 1;
  • 258 700 ÷ 2 = 129 350 + 0;
  • 129 350 ÷ 2 = 64 675 + 0;
  • 64 675 ÷ 2 = 32 337 + 1;
  • 32 337 ÷ 2 = 16 168 + 1;
  • 16 168 ÷ 2 = 8 084 + 0;
  • 8 084 ÷ 2 = 4 042 + 0;
  • 4 042 ÷ 2 = 2 021 + 0;
  • 2 021 ÷ 2 = 1 010 + 1;
  • 1 010 ÷ 2 = 505 + 0;
  • 505 ÷ 2 = 252 + 1;
  • 252 ÷ 2 = 126 + 0;
  • 126 ÷ 2 = 63 + 0;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number:

Take all the remainders starting from the bottom of the list constructed above.

Number 1 111 111 101 011 070(10), a positive integer number (with no sign),
converted from decimal system (from base 10)
and written as an unsigned binary (in base 2):

1 111 111 101 011 070(10) = 11 1111 0010 1000 1100 1011 0110 0111 1011 0101 0100 0111 1110(2)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

How to convert unsigned integer numbers (positive) from decimal system (base 10) to binary = simply convert from base ten to base two

Follow the steps below to convert a base ten unsigned integer number to base two:

  • 1. Divide repeatedly by 2 the positive integer number that has to be converted to binary, keeping track of each remainder, until we get a QUOTIENT that is equal to ZERO.
  • 2. Construct the base 2 representation of the positive integer number, by taking all the remainders starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).

Example: convert the positive integer number 55 from decimal system (base ten) to binary code (base two):

  • 1. Divide repeatedly 55 by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 55 ÷ 2 = 27 + 1;
    • 27 ÷ 2 = 13 + 1;
    • 13 ÷ 2 = 6 + 1;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
  • 2. Construct the base 2 representation of the positive integer number, by taking all the remainders starting from the bottom of the list constructed above:
  • 55(10) = 11 0111(2)
  • Number 5510, positive integer (no sign), converted from decimal system (base 10) to unsigned binary (base 2) = 11 0111(2)