# Unsigned: Integer -> Binary: 111 011 009 995 Convert the Positive Integer (Whole Number) From Base Ten (10) To Base Two (2), Conversion and Writing of Decimal System Number as Unsigned Binary Code

## Unsigned (positive) integer number 111 011 009 995(10) converted and written as an unsigned binary (base 2) = ?

### 1. Divide the number repeatedly by 2:

#### We stop when we get a quotient that is equal to zero.

• division = quotient + remainder;
• 111 011 009 995 ÷ 2 = 55 505 504 997 + 1;
• 55 505 504 997 ÷ 2 = 27 752 752 498 + 1;
• 27 752 752 498 ÷ 2 = 13 876 376 249 + 0;
• 13 876 376 249 ÷ 2 = 6 938 188 124 + 1;
• 6 938 188 124 ÷ 2 = 3 469 094 062 + 0;
• 3 469 094 062 ÷ 2 = 1 734 547 031 + 0;
• 1 734 547 031 ÷ 2 = 867 273 515 + 1;
• 867 273 515 ÷ 2 = 433 636 757 + 1;
• 433 636 757 ÷ 2 = 216 818 378 + 1;
• 216 818 378 ÷ 2 = 108 409 189 + 0;
• 108 409 189 ÷ 2 = 54 204 594 + 1;
• 54 204 594 ÷ 2 = 27 102 297 + 0;
• 27 102 297 ÷ 2 = 13 551 148 + 1;
• 13 551 148 ÷ 2 = 6 775 574 + 0;
• 6 775 574 ÷ 2 = 3 387 787 + 0;
• 3 387 787 ÷ 2 = 1 693 893 + 1;
• 1 693 893 ÷ 2 = 846 946 + 1;
• 846 946 ÷ 2 = 423 473 + 0;
• 423 473 ÷ 2 = 211 736 + 1;
• 211 736 ÷ 2 = 105 868 + 0;
• 105 868 ÷ 2 = 52 934 + 0;
• 52 934 ÷ 2 = 26 467 + 0;
• 26 467 ÷ 2 = 13 233 + 1;
• 13 233 ÷ 2 = 6 616 + 1;
• 6 616 ÷ 2 = 3 308 + 0;
• 3 308 ÷ 2 = 1 654 + 0;
• 1 654 ÷ 2 = 827 + 0;
• 827 ÷ 2 = 413 + 1;
• 413 ÷ 2 = 206 + 1;
• 206 ÷ 2 = 103 + 0;
• 103 ÷ 2 = 51 + 1;
• 51 ÷ 2 = 25 + 1;
• 25 ÷ 2 = 12 + 1;
• 12 ÷ 2 = 6 + 0;
• 6 ÷ 2 = 3 + 0;
• 3 ÷ 2 = 1 + 1;
• 1 ÷ 2 = 0 + 1;

## How to convert unsigned integer numbers (positive) from decimal system (base 10) to binary = simply convert from base ten to base two

### Follow the steps below to convert a base ten unsigned integer number to base two:

• 1. Divide repeatedly by 2 the positive integer number that has to be converted to binary, keeping track of each remainder, until we get a QUOTIENT that is equal to ZERO.
• 2. Construct the base 2 representation of the positive integer number, by taking all the remainders starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).

### Example: convert the positive integer number 55 from decimal system (base ten) to binary code (base two):

• 1. Divide repeatedly 55 by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
• division = quotient + remainder;
• 55 ÷ 2 = 27 + 1;
• 27 ÷ 2 = 13 + 1;
• 13 ÷ 2 = 6 + 1;
• 6 ÷ 2 = 3 + 0;
• 3 ÷ 2 = 1 + 1;
• 1 ÷ 2 = 0 + 1;
• 2. Construct the base 2 representation of the positive integer number, by taking all the remainders starting from the bottom of the list constructed above:
55(10) = 11 0111(2)