What are the required steps to convert base 10 decimal system
number 1 110 101 110 078 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 110 101 110 078 ÷ 2 = 555 050 555 039 + 0;
- 555 050 555 039 ÷ 2 = 277 525 277 519 + 1;
- 277 525 277 519 ÷ 2 = 138 762 638 759 + 1;
- 138 762 638 759 ÷ 2 = 69 381 319 379 + 1;
- 69 381 319 379 ÷ 2 = 34 690 659 689 + 1;
- 34 690 659 689 ÷ 2 = 17 345 329 844 + 1;
- 17 345 329 844 ÷ 2 = 8 672 664 922 + 0;
- 8 672 664 922 ÷ 2 = 4 336 332 461 + 0;
- 4 336 332 461 ÷ 2 = 2 168 166 230 + 1;
- 2 168 166 230 ÷ 2 = 1 084 083 115 + 0;
- 1 084 083 115 ÷ 2 = 542 041 557 + 1;
- 542 041 557 ÷ 2 = 271 020 778 + 1;
- 271 020 778 ÷ 2 = 135 510 389 + 0;
- 135 510 389 ÷ 2 = 67 755 194 + 1;
- 67 755 194 ÷ 2 = 33 877 597 + 0;
- 33 877 597 ÷ 2 = 16 938 798 + 1;
- 16 938 798 ÷ 2 = 8 469 399 + 0;
- 8 469 399 ÷ 2 = 4 234 699 + 1;
- 4 234 699 ÷ 2 = 2 117 349 + 1;
- 2 117 349 ÷ 2 = 1 058 674 + 1;
- 1 058 674 ÷ 2 = 529 337 + 0;
- 529 337 ÷ 2 = 264 668 + 1;
- 264 668 ÷ 2 = 132 334 + 0;
- 132 334 ÷ 2 = 66 167 + 0;
- 66 167 ÷ 2 = 33 083 + 1;
- 33 083 ÷ 2 = 16 541 + 1;
- 16 541 ÷ 2 = 8 270 + 1;
- 8 270 ÷ 2 = 4 135 + 0;
- 4 135 ÷ 2 = 2 067 + 1;
- 2 067 ÷ 2 = 1 033 + 1;
- 1 033 ÷ 2 = 516 + 1;
- 516 ÷ 2 = 258 + 0;
- 258 ÷ 2 = 129 + 0;
- 129 ÷ 2 = 64 + 1;
- 64 ÷ 2 = 32 + 0;
- 32 ÷ 2 = 16 + 0;
- 16 ÷ 2 = 8 + 0;
- 8 ÷ 2 = 4 + 0;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 110 101 110 078(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
1 110 101 110 078 (base 10) = 1 0000 0010 0111 0111 0010 1110 1010 1101 0011 1110 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.