Base Two: Unsigned Base Ten Number 110 001 110 110 969 Converted To Base Two Binary Code. The Natural Number (Positive Integer, No Sign) Converted From Decimal System and Written As Binary Code

Base ten unsigned number 110 001 110 110 969(10) converted and written as a base two binary code

1. Divide the number repeatedly by 2:

Keep track of each remainder.

Stop when getting a quotient that is equal to zero.


  • division = quotient + remainder;
  • 110 001 110 110 969 ÷ 2 = 55 000 555 055 484 + 1;
  • 55 000 555 055 484 ÷ 2 = 27 500 277 527 742 + 0;
  • 27 500 277 527 742 ÷ 2 = 13 750 138 763 871 + 0;
  • 13 750 138 763 871 ÷ 2 = 6 875 069 381 935 + 1;
  • 6 875 069 381 935 ÷ 2 = 3 437 534 690 967 + 1;
  • 3 437 534 690 967 ÷ 2 = 1 718 767 345 483 + 1;
  • 1 718 767 345 483 ÷ 2 = 859 383 672 741 + 1;
  • 859 383 672 741 ÷ 2 = 429 691 836 370 + 1;
  • 429 691 836 370 ÷ 2 = 214 845 918 185 + 0;
  • 214 845 918 185 ÷ 2 = 107 422 959 092 + 1;
  • 107 422 959 092 ÷ 2 = 53 711 479 546 + 0;
  • 53 711 479 546 ÷ 2 = 26 855 739 773 + 0;
  • 26 855 739 773 ÷ 2 = 13 427 869 886 + 1;
  • 13 427 869 886 ÷ 2 = 6 713 934 943 + 0;
  • 6 713 934 943 ÷ 2 = 3 356 967 471 + 1;
  • 3 356 967 471 ÷ 2 = 1 678 483 735 + 1;
  • 1 678 483 735 ÷ 2 = 839 241 867 + 1;
  • 839 241 867 ÷ 2 = 419 620 933 + 1;
  • 419 620 933 ÷ 2 = 209 810 466 + 1;
  • 209 810 466 ÷ 2 = 104 905 233 + 0;
  • 104 905 233 ÷ 2 = 52 452 616 + 1;
  • 52 452 616 ÷ 2 = 26 226 308 + 0;
  • 26 226 308 ÷ 2 = 13 113 154 + 0;
  • 13 113 154 ÷ 2 = 6 556 577 + 0;
  • 6 556 577 ÷ 2 = 3 278 288 + 1;
  • 3 278 288 ÷ 2 = 1 639 144 + 0;
  • 1 639 144 ÷ 2 = 819 572 + 0;
  • 819 572 ÷ 2 = 409 786 + 0;
  • 409 786 ÷ 2 = 204 893 + 0;
  • 204 893 ÷ 2 = 102 446 + 1;
  • 102 446 ÷ 2 = 51 223 + 0;
  • 51 223 ÷ 2 = 25 611 + 1;
  • 25 611 ÷ 2 = 12 805 + 1;
  • 12 805 ÷ 2 = 6 402 + 1;
  • 6 402 ÷ 2 = 3 201 + 0;
  • 3 201 ÷ 2 = 1 600 + 1;
  • 1 600 ÷ 2 = 800 + 0;
  • 800 ÷ 2 = 400 + 0;
  • 400 ÷ 2 = 200 + 0;
  • 200 ÷ 2 = 100 + 0;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number:

Take all the remainders starting from the bottom of the list constructed above.


Number 110 001 110 110 969(10), a positive integer number (with no sign),
converted from decimal system (from base 10)
and written as an unsigned binary (in base 2):

110 001 110 110 969(10) = 110 0100 0000 1011 1010 0001 0001 0111 1101 0010 1111 1001(2)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

How to convert unsigned integer numbers (positive) from decimal system (base 10) to binary = simply convert from base ten to base two

Follow the steps below to convert a base ten unsigned integer number to base two:

  • 1. Divide repeatedly by 2 the positive integer number that has to be converted to binary, keeping track of each remainder, until we get a QUOTIENT that is equal to ZERO.
  • 2. Construct the base 2 representation of the positive integer number, by taking all the remainders starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).

Example: convert the positive integer number 55 from decimal system (base ten) to binary code (base two):

  • 1. Divide repeatedly 55 by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 55 ÷ 2 = 27 + 1;
    • 27 ÷ 2 = 13 + 1;
    • 13 ÷ 2 = 6 + 1;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
  • 2. Construct the base 2 representation of the positive integer number, by taking all the remainders starting from the bottom of the list constructed above:
    55(10) = 11 0111(2)
  • Number 5510, positive integer (no sign), converted from decimal system (base 10) to unsigned binary (base 2) = 11 0111(2)