What are the required steps to convert base 10 decimal system
number 101 100 110 111 085 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 101 100 110 111 085 ÷ 2 = 50 550 055 055 542 + 1;
- 50 550 055 055 542 ÷ 2 = 25 275 027 527 771 + 0;
- 25 275 027 527 771 ÷ 2 = 12 637 513 763 885 + 1;
- 12 637 513 763 885 ÷ 2 = 6 318 756 881 942 + 1;
- 6 318 756 881 942 ÷ 2 = 3 159 378 440 971 + 0;
- 3 159 378 440 971 ÷ 2 = 1 579 689 220 485 + 1;
- 1 579 689 220 485 ÷ 2 = 789 844 610 242 + 1;
- 789 844 610 242 ÷ 2 = 394 922 305 121 + 0;
- 394 922 305 121 ÷ 2 = 197 461 152 560 + 1;
- 197 461 152 560 ÷ 2 = 98 730 576 280 + 0;
- 98 730 576 280 ÷ 2 = 49 365 288 140 + 0;
- 49 365 288 140 ÷ 2 = 24 682 644 070 + 0;
- 24 682 644 070 ÷ 2 = 12 341 322 035 + 0;
- 12 341 322 035 ÷ 2 = 6 170 661 017 + 1;
- 6 170 661 017 ÷ 2 = 3 085 330 508 + 1;
- 3 085 330 508 ÷ 2 = 1 542 665 254 + 0;
- 1 542 665 254 ÷ 2 = 771 332 627 + 0;
- 771 332 627 ÷ 2 = 385 666 313 + 1;
- 385 666 313 ÷ 2 = 192 833 156 + 1;
- 192 833 156 ÷ 2 = 96 416 578 + 0;
- 96 416 578 ÷ 2 = 48 208 289 + 0;
- 48 208 289 ÷ 2 = 24 104 144 + 1;
- 24 104 144 ÷ 2 = 12 052 072 + 0;
- 12 052 072 ÷ 2 = 6 026 036 + 0;
- 6 026 036 ÷ 2 = 3 013 018 + 0;
- 3 013 018 ÷ 2 = 1 506 509 + 0;
- 1 506 509 ÷ 2 = 753 254 + 1;
- 753 254 ÷ 2 = 376 627 + 0;
- 376 627 ÷ 2 = 188 313 + 1;
- 188 313 ÷ 2 = 94 156 + 1;
- 94 156 ÷ 2 = 47 078 + 0;
- 47 078 ÷ 2 = 23 539 + 0;
- 23 539 ÷ 2 = 11 769 + 1;
- 11 769 ÷ 2 = 5 884 + 1;
- 5 884 ÷ 2 = 2 942 + 0;
- 2 942 ÷ 2 = 1 471 + 0;
- 1 471 ÷ 2 = 735 + 1;
- 735 ÷ 2 = 367 + 1;
- 367 ÷ 2 = 183 + 1;
- 183 ÷ 2 = 91 + 1;
- 91 ÷ 2 = 45 + 1;
- 45 ÷ 2 = 22 + 1;
- 22 ÷ 2 = 11 + 0;
- 11 ÷ 2 = 5 + 1;
- 5 ÷ 2 = 2 + 1;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
101 100 110 111 085(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
101 100 110 111 085 (base 10) = 101 1011 1111 0011 0011 0100 0010 0110 0110 0001 0110 1101 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.