What are the required steps to convert base 10 decimal system
number 10 110 011 006 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 10 110 011 006 ÷ 2 = 5 055 005 503 + 0;
- 5 055 005 503 ÷ 2 = 2 527 502 751 + 1;
- 2 527 502 751 ÷ 2 = 1 263 751 375 + 1;
- 1 263 751 375 ÷ 2 = 631 875 687 + 1;
- 631 875 687 ÷ 2 = 315 937 843 + 1;
- 315 937 843 ÷ 2 = 157 968 921 + 1;
- 157 968 921 ÷ 2 = 78 984 460 + 1;
- 78 984 460 ÷ 2 = 39 492 230 + 0;
- 39 492 230 ÷ 2 = 19 746 115 + 0;
- 19 746 115 ÷ 2 = 9 873 057 + 1;
- 9 873 057 ÷ 2 = 4 936 528 + 1;
- 4 936 528 ÷ 2 = 2 468 264 + 0;
- 2 468 264 ÷ 2 = 1 234 132 + 0;
- 1 234 132 ÷ 2 = 617 066 + 0;
- 617 066 ÷ 2 = 308 533 + 0;
- 308 533 ÷ 2 = 154 266 + 1;
- 154 266 ÷ 2 = 77 133 + 0;
- 77 133 ÷ 2 = 38 566 + 1;
- 38 566 ÷ 2 = 19 283 + 0;
- 19 283 ÷ 2 = 9 641 + 1;
- 9 641 ÷ 2 = 4 820 + 1;
- 4 820 ÷ 2 = 2 410 + 0;
- 2 410 ÷ 2 = 1 205 + 0;
- 1 205 ÷ 2 = 602 + 1;
- 602 ÷ 2 = 301 + 0;
- 301 ÷ 2 = 150 + 1;
- 150 ÷ 2 = 75 + 0;
- 75 ÷ 2 = 37 + 1;
- 37 ÷ 2 = 18 + 1;
- 18 ÷ 2 = 9 + 0;
- 9 ÷ 2 = 4 + 1;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
10 110 011 006(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
10 110 011 006 (base 10) = 10 0101 1010 1001 1010 1000 0110 0111 1110 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.