What are the required steps to convert base 10 decimal system
number 1 010 111 011 225 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 010 111 011 225 ÷ 2 = 505 055 505 612 + 1;
- 505 055 505 612 ÷ 2 = 252 527 752 806 + 0;
- 252 527 752 806 ÷ 2 = 126 263 876 403 + 0;
- 126 263 876 403 ÷ 2 = 63 131 938 201 + 1;
- 63 131 938 201 ÷ 2 = 31 565 969 100 + 1;
- 31 565 969 100 ÷ 2 = 15 782 984 550 + 0;
- 15 782 984 550 ÷ 2 = 7 891 492 275 + 0;
- 7 891 492 275 ÷ 2 = 3 945 746 137 + 1;
- 3 945 746 137 ÷ 2 = 1 972 873 068 + 1;
- 1 972 873 068 ÷ 2 = 986 436 534 + 0;
- 986 436 534 ÷ 2 = 493 218 267 + 0;
- 493 218 267 ÷ 2 = 246 609 133 + 1;
- 246 609 133 ÷ 2 = 123 304 566 + 1;
- 123 304 566 ÷ 2 = 61 652 283 + 0;
- 61 652 283 ÷ 2 = 30 826 141 + 1;
- 30 826 141 ÷ 2 = 15 413 070 + 1;
- 15 413 070 ÷ 2 = 7 706 535 + 0;
- 7 706 535 ÷ 2 = 3 853 267 + 1;
- 3 853 267 ÷ 2 = 1 926 633 + 1;
- 1 926 633 ÷ 2 = 963 316 + 1;
- 963 316 ÷ 2 = 481 658 + 0;
- 481 658 ÷ 2 = 240 829 + 0;
- 240 829 ÷ 2 = 120 414 + 1;
- 120 414 ÷ 2 = 60 207 + 0;
- 60 207 ÷ 2 = 30 103 + 1;
- 30 103 ÷ 2 = 15 051 + 1;
- 15 051 ÷ 2 = 7 525 + 1;
- 7 525 ÷ 2 = 3 762 + 1;
- 3 762 ÷ 2 = 1 881 + 0;
- 1 881 ÷ 2 = 940 + 1;
- 940 ÷ 2 = 470 + 0;
- 470 ÷ 2 = 235 + 0;
- 235 ÷ 2 = 117 + 1;
- 117 ÷ 2 = 58 + 1;
- 58 ÷ 2 = 29 + 0;
- 29 ÷ 2 = 14 + 1;
- 14 ÷ 2 = 7 + 0;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 010 111 011 225(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
1 010 111 011 225 (base 10) = 1110 1011 0010 1111 0100 1110 1101 1001 1001 1001 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.