Unsigned Base Two Binary Number 111 1100 0001 1111 0000 0111 1100 0001 1111 0000 0111 1010 1100 Converted and Written as a Base Ten Natural Number (Positive Integer, Without Sign), in Decimal System

Unsigned base two binary number 111 1100 0001 1111 0000 0111 1100 0001 1111 0000 0111 1010 1100(2) converted and written as a base ten number

1. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent.

  • 250

    1
  • 249

    1
  • 248

    1
  • 247

    1
  • 246

    1
  • 245

    0
  • 244

    0
  • 243

    0
  • 242

    0
  • 241

    0
  • 240

    1
  • 239

    1
  • 238

    1
  • 237

    1
  • 236

    1
  • 235

    0
  • 234

    0
  • 233

    0
  • 232

    0
  • 231

    0
  • 230

    1
  • 229

    1
  • 228

    1
  • 227

    1
  • 226

    1
  • 225

    0
  • 224

    0
  • 223

    0
  • 222

    0
  • 221

    0
  • 220

    1
  • 219

    1
  • 218

    1
  • 217

    1
  • 216

    1
  • 215

    0
  • 214

    0
  • 213

    0
  • 212

    0
  • 211

    0
  • 210

    1
  • 29

    1
  • 28

    1
  • 27

    1
  • 26

    0
  • 25

    1
  • 24

    0
  • 23

    1
  • 22

    1
  • 21

    0
  • 20

    0

2. Multiply each bit by its corresponding power of 2 and add all the terms up.

111 1100 0001 1111 0000 0111 1100 0001 1111 0000 0111 1010 1100(2) =


(1 × 250 + 1 × 249 + 1 × 248 + 1 × 247 + 1 × 246 + 0 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 0 × 241 + 1 × 240 + 1 × 239 + 1 × 238 + 1 × 237 + 1 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 0 × 231 + 1 × 230 + 1 × 229 + 1 × 228 + 1 × 227 + 1 × 226 + 0 × 225 + 0 × 224 + 0 × 223 + 0 × 222 + 0 × 221 + 1 × 220 + 1 × 219 + 1 × 218 + 1 × 217 + 1 × 216 + 0 × 215 + 0 × 214 + 0 × 213 + 0 × 212 + 0 × 211 + 1 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20)(10) =


(1 125 899 906 842 624 + 562 949 953 421 312 + 281 474 976 710 656 + 140 737 488 355 328 + 70 368 744 177 664 + 0 + 0 + 0 + 0 + 0 + 1 099 511 627 776 + 549 755 813 888 + 274 877 906 944 + 137 438 953 472 + 68 719 476 736 + 0 + 0 + 0 + 0 + 0 + 1 073 741 824 + 536 870 912 + 268 435 456 + 134 217 728 + 67 108 864 + 0 + 0 + 0 + 0 + 0 + 1 048 576 + 524 288 + 262 144 + 131 072 + 65 536 + 0 + 0 + 0 + 0 + 0 + 1 024 + 512 + 256 + 128 + 0 + 32 + 0 + 8 + 4 + 0 + 0)(10) =


(1 125 899 906 842 624 + 562 949 953 421 312 + 281 474 976 710 656 + 140 737 488 355 328 + 70 368 744 177 664 + 1 099 511 627 776 + 549 755 813 888 + 274 877 906 944 + 137 438 953 472 + 68 719 476 736 + 1 073 741 824 + 536 870 912 + 268 435 456 + 134 217 728 + 67 108 864 + 1 048 576 + 524 288 + 262 144 + 131 072 + 65 536 + 1 024 + 512 + 256 + 128 + 32 + 8 + 4)(10) =


2 183 563 455 694 764(10)

The number 111 1100 0001 1111 0000 0111 1100 0001 1111 0000 0111 1010 1100(2) converted from an unsigned binary (in base 2) and written as a positive integer (with no sign) in decimal system (in base ten):
111 1100 0001 1111 0000 0111 1100 0001 1111 0000 0111 1010 1100(2) = 2 183 563 455 694 764(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

How to convert unsigned binary numbers from binary system to decimal? Simply convert from base two to base ten.

To understand how to convert a number from base two to base ten, the easiest way is to do it through an example - convert the number from base two, 101 0011(2), to base ten:

  • Write bellow the binary number in base two, and above each bit that makes up the binary number write the corresponding power of 2 (numeral base) that its place value represents, starting with zero, from the right of the number (rightmost bit), walking to the left of the number, increasing each corresponding power of 2 by exactly one unit each time we move to the left:
  • powers of 2: 6 5 4 3 2 1 0
    digits: 1 0 1 0 0 1 1
  • Build the representation of the positive number in base 10, by taking each digit of the binary number, multiplying it by the corresponding power of 2 and then adding all the terms up:

    101 0011(2) =


    (1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20)(10) =


    (64 + 0 + 16 + 0 + 0 + 2 + 1)(10) =


    (64 + 16 + 2 + 1)(10) =


    83(10)

  • Binary unsigned number (base 2), 101 0011(2) = 83(10), unsigned positive integer in base 10