Base Two to Base Ten: Unsigned Base Two Binary Number 110 1010 1001 0000 0100 0010 1000 1000 1010 1101 0000 0000 0011 1111 1001 1111 Converted and Written as a Base Ten Natural Number (Positive Integer, Without Sign), in Decimal System

Unsigned base two binary number 110 1010 1001 0000 0100 0010 1000 1000 1010 1101 0000 0000 0011 1111 1001 1111(2) converted and written as a base ten number

1. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent.

  • 262

    1
  • 261

    1
  • 260

    0
  • 259

    1
  • 258

    0
  • 257

    1
  • 256

    0
  • 255

    1
  • 254

    0
  • 253

    0
  • 252

    1
  • 251

    0
  • 250

    0
  • 249

    0
  • 248

    0
  • 247

    0
  • 246

    1
  • 245

    0
  • 244

    0
  • 243

    0
  • 242

    0
  • 241

    1
  • 240

    0
  • 239

    1
  • 238

    0
  • 237

    0
  • 236

    0
  • 235

    1
  • 234

    0
  • 233

    0
  • 232

    0
  • 231

    1
  • 230

    0
  • 229

    1
  • 228

    0
  • 227

    1
  • 226

    1
  • 225

    0
  • 224

    1
  • 223

    0
  • 222

    0
  • 221

    0
  • 220

    0
  • 219

    0
  • 218

    0
  • 217

    0
  • 216

    0
  • 215

    0
  • 214

    0
  • 213

    1
  • 212

    1
  • 211

    1
  • 210

    1
  • 29

    1
  • 28

    1
  • 27

    1
  • 26

    0
  • 25

    0
  • 24

    1
  • 23

    1
  • 22

    1
  • 21

    1
  • 20

    1

2. Multiply each bit by its corresponding power of 2 and add all the terms up.

110 1010 1001 0000 0100 0010 1000 1000 1010 1101 0000 0000 0011 1111 1001 1111(2) =


(1 × 262 + 1 × 261 + 0 × 260 + 1 × 259 + 0 × 258 + 1 × 257 + 0 × 256 + 1 × 255 + 0 × 254 + 0 × 253 + 1 × 252 + 0 × 251 + 0 × 250 + 0 × 249 + 0 × 248 + 0 × 247 + 1 × 246 + 0 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 1 × 241 + 0 × 240 + 1 × 239 + 0 × 238 + 0 × 237 + 0 × 236 + 1 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 1 × 231 + 0 × 230 + 1 × 229 + 0 × 228 + 1 × 227 + 1 × 226 + 0 × 225 + 1 × 224 + 0 × 223 + 0 × 222 + 0 × 221 + 0 × 220 + 0 × 219 + 0 × 218 + 0 × 217 + 0 × 216 + 0 × 215 + 0 × 214 + 1 × 213 + 1 × 212 + 1 × 211 + 1 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20)(10) =


(4 611 686 018 427 387 904 + 2 305 843 009 213 693 952 + 0 + 576 460 752 303 423 488 + 0 + 144 115 188 075 855 872 + 0 + 36 028 797 018 963 968 + 0 + 0 + 4 503 599 627 370 496 + 0 + 0 + 0 + 0 + 0 + 70 368 744 177 664 + 0 + 0 + 0 + 0 + 2 199 023 255 552 + 0 + 549 755 813 888 + 0 + 0 + 0 + 34 359 738 368 + 0 + 0 + 0 + 2 147 483 648 + 0 + 536 870 912 + 0 + 134 217 728 + 67 108 864 + 0 + 16 777 216 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 8 192 + 4 096 + 2 048 + 1 024 + 512 + 256 + 128 + 0 + 0 + 16 + 8 + 4 + 2 + 1)(10) =


(4 611 686 018 427 387 904 + 2 305 843 009 213 693 952 + 576 460 752 303 423 488 + 144 115 188 075 855 872 + 36 028 797 018 963 968 + 4 503 599 627 370 496 + 70 368 744 177 664 + 2 199 023 255 552 + 549 755 813 888 + 34 359 738 368 + 2 147 483 648 + 536 870 912 + 134 217 728 + 67 108 864 + 16 777 216 + 8 192 + 4 096 + 2 048 + 1 024 + 512 + 256 + 128 + 16 + 8 + 4 + 2 + 1)(10) =


7 678 710 519 452 155 807(10)

The number 110 1010 1001 0000 0100 0010 1000 1000 1010 1101 0000 0000 0011 1111 1001 1111(2) converted from an unsigned binary (in base 2) and written as a positive integer (with no sign) in decimal system (in base ten):
110 1010 1001 0000 0100 0010 1000 1000 1010 1101 0000 0000 0011 1111 1001 1111(2) = 7 678 710 519 452 155 807(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

How to convert unsigned binary numbers from binary system to decimal? Simply convert from base two to base ten.

To understand how to convert a number from base two to base ten, the easiest way is to do it through an example - convert the number from base two, 101 0011(2), to base ten:

  • Write bellow the binary number in base two, and above each bit that makes up the binary number write the corresponding power of 2 (numeral base) that its place value represents, starting with zero, from the right of the number (rightmost bit), walking to the left of the number, increasing each corresponding power of 2 by exactly one unit each time we move to the left:
  • powers of 2: 6 5 4 3 2 1 0
    digits: 1 0 1 0 0 1 1
  • Build the representation of the positive number in base 10, by taking each digit of the binary number, multiplying it by the corresponding power of 2 and then adding all the terms up:

    101 0011(2) =


    (1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20)(10) =


    (64 + 0 + 16 + 0 + 0 + 2 + 1)(10) =


    (64 + 16 + 2 + 1)(10) =


    83(10)

  • Binary unsigned number (base 2), 101 0011(2) = 83(10), unsigned positive integer in base 10