Base Two to Base Ten: Unsigned Base Two Binary Number 11 0101 0001 0100 0101 0001 0000 0101 0000 0100 0101 0000 1111 1110 0101 Converted and Written as a Base Ten Natural Number (Positive Integer, Without Sign), in Decimal System

Unsigned base two binary number 11 0101 0001 0100 0101 0001 0000 0101 0000 0100 0101 0000 1111 1110 0101(2) converted and written as a base ten number

1. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent.

  • 257

    1
  • 256

    1
  • 255

    0
  • 254

    1
  • 253

    0
  • 252

    1
  • 251

    0
  • 250

    0
  • 249

    0
  • 248

    1
  • 247

    0
  • 246

    1
  • 245

    0
  • 244

    0
  • 243

    0
  • 242

    1
  • 241

    0
  • 240

    1
  • 239

    0
  • 238

    0
  • 237

    0
  • 236

    1
  • 235

    0
  • 234

    0
  • 233

    0
  • 232

    0
  • 231

    0
  • 230

    1
  • 229

    0
  • 228

    1
  • 227

    0
  • 226

    0
  • 225

    0
  • 224

    0
  • 223

    0
  • 222

    1
  • 221

    0
  • 220

    0
  • 219

    0
  • 218

    1
  • 217

    0
  • 216

    1
  • 215

    0
  • 214

    0
  • 213

    0
  • 212

    0
  • 211

    1
  • 210

    1
  • 29

    1
  • 28

    1
  • 27

    1
  • 26

    1
  • 25

    1
  • 24

    0
  • 23

    0
  • 22

    1
  • 21

    0
  • 20

    1

2. Multiply each bit by its corresponding power of 2 and add all the terms up.

11 0101 0001 0100 0101 0001 0000 0101 0000 0100 0101 0000 1111 1110 0101(2) =


(1 × 257 + 1 × 256 + 0 × 255 + 1 × 254 + 0 × 253 + 1 × 252 + 0 × 251 + 0 × 250 + 0 × 249 + 1 × 248 + 0 × 247 + 1 × 246 + 0 × 245 + 0 × 244 + 0 × 243 + 1 × 242 + 0 × 241 + 1 × 240 + 0 × 239 + 0 × 238 + 0 × 237 + 1 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 0 × 231 + 1 × 230 + 0 × 229 + 1 × 228 + 0 × 227 + 0 × 226 + 0 × 225 + 0 × 224 + 0 × 223 + 1 × 222 + 0 × 221 + 0 × 220 + 0 × 219 + 1 × 218 + 0 × 217 + 1 × 216 + 0 × 215 + 0 × 214 + 0 × 213 + 0 × 212 + 1 × 211 + 1 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20)(10) =


(144 115 188 075 855 872 + 72 057 594 037 927 936 + 0 + 18 014 398 509 481 984 + 0 + 4 503 599 627 370 496 + 0 + 0 + 0 + 281 474 976 710 656 + 0 + 70 368 744 177 664 + 0 + 0 + 0 + 4 398 046 511 104 + 0 + 1 099 511 627 776 + 0 + 0 + 0 + 68 719 476 736 + 0 + 0 + 0 + 0 + 0 + 1 073 741 824 + 0 + 268 435 456 + 0 + 0 + 0 + 0 + 0 + 4 194 304 + 0 + 0 + 0 + 262 144 + 0 + 65 536 + 0 + 0 + 0 + 0 + 2 048 + 1 024 + 512 + 256 + 128 + 64 + 32 + 0 + 0 + 4 + 0 + 1)(10) =


(144 115 188 075 855 872 + 72 057 594 037 927 936 + 18 014 398 509 481 984 + 4 503 599 627 370 496 + 281 474 976 710 656 + 70 368 744 177 664 + 4 398 046 511 104 + 1 099 511 627 776 + 68 719 476 736 + 1 073 741 824 + 268 435 456 + 4 194 304 + 262 144 + 65 536 + 2 048 + 1 024 + 512 + 256 + 128 + 64 + 32 + 4 + 1)(10) =


239 048 191 595 843 557(10)

The number 11 0101 0001 0100 0101 0001 0000 0101 0000 0100 0101 0000 1111 1110 0101(2) converted from an unsigned binary (in base 2) and written as a positive integer (with no sign) in decimal system (in base ten):
11 0101 0001 0100 0101 0001 0000 0101 0000 0100 0101 0000 1111 1110 0101(2) = 239 048 191 595 843 557(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

How to convert unsigned binary numbers from binary system to decimal? Simply convert from base two to base ten.

To understand how to convert a number from base two to base ten, the easiest way is to do it through an example - convert the number from base two, 101 0011(2), to base ten:

  • Write bellow the binary number in base two, and above each bit that makes up the binary number write the corresponding power of 2 (numeral base) that its place value represents, starting with zero, from the right of the number (rightmost bit), walking to the left of the number, increasing each corresponding power of 2 by exactly one unit each time we move to the left:
  • powers of 2: 6 5 4 3 2 1 0
    digits: 1 0 1 0 0 1 1
  • Build the representation of the positive number in base 10, by taking each digit of the binary number, multiplying it by the corresponding power of 2 and then adding all the terms up:

    101 0011(2) =


    (1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20)(10) =


    (64 + 0 + 16 + 0 + 0 + 2 + 1)(10) =


    (64 + 16 + 2 + 1)(10) =


    83(10)

  • Binary unsigned number (base 2), 101 0011(2) = 83(10), unsigned positive integer in base 10