Unsigned Base Two Binary Number 11 0100 0011 1010 0011 1010 0011 1000 0111 0011 0011 1010 0010 1111 0000 0110 Converted and Written as a Base Ten Natural Number (Positive Integer, Without Sign), in Decimal System

Unsigned base two binary number 11 0100 0011 1010 0011 1010 0011 1000 0111 0011 0011 1010 0010 1111 0000 0110(2) converted and written as a base ten number

1. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent.

  • 261

    1
  • 260

    1
  • 259

    0
  • 258

    1
  • 257

    0
  • 256

    0
  • 255

    0
  • 254

    0
  • 253

    1
  • 252

    1
  • 251

    1
  • 250

    0
  • 249

    1
  • 248

    0
  • 247

    0
  • 246

    0
  • 245

    1
  • 244

    1
  • 243

    1
  • 242

    0
  • 241

    1
  • 240

    0
  • 239

    0
  • 238

    0
  • 237

    1
  • 236

    1
  • 235

    1
  • 234

    0
  • 233

    0
  • 232

    0
  • 231

    0
  • 230

    1
  • 229

    1
  • 228

    1
  • 227

    0
  • 226

    0
  • 225

    1
  • 224

    1
  • 223

    0
  • 222

    0
  • 221

    1
  • 220

    1
  • 219

    1
  • 218

    0
  • 217

    1
  • 216

    0
  • 215

    0
  • 214

    0
  • 213

    1
  • 212

    0
  • 211

    1
  • 210

    1
  • 29

    1
  • 28

    1
  • 27

    0
  • 26

    0
  • 25

    0
  • 24

    0
  • 23

    0
  • 22

    1
  • 21

    1
  • 20

    0

2. Multiply each bit by its corresponding power of 2 and add all the terms up.

11 0100 0011 1010 0011 1010 0011 1000 0111 0011 0011 1010 0010 1111 0000 0110(2) =


(1 × 261 + 1 × 260 + 0 × 259 + 1 × 258 + 0 × 257 + 0 × 256 + 0 × 255 + 0 × 254 + 1 × 253 + 1 × 252 + 1 × 251 + 0 × 250 + 1 × 249 + 0 × 248 + 0 × 247 + 0 × 246 + 1 × 245 + 1 × 244 + 1 × 243 + 0 × 242 + 1 × 241 + 0 × 240 + 0 × 239 + 0 × 238 + 1 × 237 + 1 × 236 + 1 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 0 × 231 + 1 × 230 + 1 × 229 + 1 × 228 + 0 × 227 + 0 × 226 + 1 × 225 + 1 × 224 + 0 × 223 + 0 × 222 + 1 × 221 + 1 × 220 + 1 × 219 + 0 × 218 + 1 × 217 + 0 × 216 + 0 × 215 + 0 × 214 + 1 × 213 + 0 × 212 + 1 × 211 + 1 × 210 + 1 × 29 + 1 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20)(10) =


(2 305 843 009 213 693 952 + 1 152 921 504 606 846 976 + 0 + 288 230 376 151 711 744 + 0 + 0 + 0 + 0 + 9 007 199 254 740 992 + 4 503 599 627 370 496 + 2 251 799 813 685 248 + 0 + 562 949 953 421 312 + 0 + 0 + 0 + 35 184 372 088 832 + 17 592 186 044 416 + 8 796 093 022 208 + 0 + 2 199 023 255 552 + 0 + 0 + 0 + 137 438 953 472 + 68 719 476 736 + 34 359 738 368 + 0 + 0 + 0 + 0 + 1 073 741 824 + 536 870 912 + 268 435 456 + 0 + 0 + 33 554 432 + 16 777 216 + 0 + 0 + 2 097 152 + 1 048 576 + 524 288 + 0 + 131 072 + 0 + 0 + 0 + 8 192 + 0 + 2 048 + 1 024 + 512 + 256 + 0 + 0 + 0 + 0 + 0 + 4 + 2 + 0)(10) =


(2 305 843 009 213 693 952 + 1 152 921 504 606 846 976 + 288 230 376 151 711 744 + 9 007 199 254 740 992 + 4 503 599 627 370 496 + 2 251 799 813 685 248 + 562 949 953 421 312 + 35 184 372 088 832 + 17 592 186 044 416 + 8 796 093 022 208 + 2 199 023 255 552 + 137 438 953 472 + 68 719 476 736 + 34 359 738 368 + 1 073 741 824 + 536 870 912 + 268 435 456 + 33 554 432 + 16 777 216 + 2 097 152 + 1 048 576 + 524 288 + 131 072 + 8 192 + 2 048 + 1 024 + 512 + 256 + 4 + 2)(10) =


3 763 384 452 747 243 270(10)

The number 11 0100 0011 1010 0011 1010 0011 1000 0111 0011 0011 1010 0010 1111 0000 0110(2) converted from an unsigned binary (in base 2) and written as a positive integer (with no sign) in decimal system (in base ten):
11 0100 0011 1010 0011 1010 0011 1000 0111 0011 0011 1010 0010 1111 0000 0110(2) = 3 763 384 452 747 243 270(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

How to convert unsigned binary numbers from binary system to decimal? Simply convert from base two to base ten.

To understand how to convert a number from base two to base ten, the easiest way is to do it through an example - convert the number from base two, 101 0011(2), to base ten:

  • Write bellow the binary number in base two, and above each bit that makes up the binary number write the corresponding power of 2 (numeral base) that its place value represents, starting with zero, from the right of the number (rightmost bit), walking to the left of the number, increasing each corresponding power of 2 by exactly one unit each time we move to the left:
  • powers of 2: 6 5 4 3 2 1 0
    digits: 1 0 1 0 0 1 1
  • Build the representation of the positive number in base 10, by taking each digit of the binary number, multiplying it by the corresponding power of 2 and then adding all the terms up:

    101 0011(2) =


    (1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20)(10) =


    (64 + 0 + 16 + 0 + 0 + 2 + 1)(10) =


    (64 + 16 + 2 + 1)(10) =


    83(10)

  • Binary unsigned number (base 2), 101 0011(2) = 83(10), unsigned positive integer in base 10