Convert 11 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0101 0101, Unsigned Base 2 Binary Number Written on 62 Bit, To Base 10 Decimal System Equivalent

How to convert 11 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0101 0101(2), the unsigned base 2 binary number written on 62 bit, to a base 10 decimal system equivalent

What are the required steps to convert the base 2 unsigned binary number
11 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0101 0101(2) to a base 10 decimal system equivalent?

1. Map the base 2 unsigned binary number's digits versus the corresponding powers of 2 that their place value represent.

  • 261

    1
  • 260

    1
  • 259

    0
  • 258

    0
  • 257

    1
  • 256

    1
  • 255

    0
  • 254

    0
  • 253

    1
  • 252

    1
  • 251

    0
  • 250

    0
  • 249

    1
  • 248

    1
  • 247

    0
  • 246

    0
  • 245

    1
  • 244

    1
  • 243

    0
  • 242

    0
  • 241

    1
  • 240

    1
  • 239

    0
  • 238

    0
  • 237

    1
  • 236

    1
  • 235

    0
  • 234

    0
  • 233

    1
  • 232

    1
  • 231

    0
  • 230

    0
  • 229

    1
  • 228

    1
  • 227

    0
  • 226

    0
  • 225

    1
  • 224

    1
  • 223

    0
  • 222

    0
  • 221

    1
  • 220

    1
  • 219

    0
  • 218

    0
  • 217

    1
  • 216

    1
  • 215

    0
  • 214

    0
  • 213

    1
  • 212

    1
  • 211

    0
  • 210

    0
  • 29

    1
  • 28

    1
  • 27

    0
  • 26

    1
  • 25

    0
  • 24

    1
  • 23

    0
  • 22

    1
  • 21

    0
  • 20

    1

2. Multiply each bit by its corresponding power of 2 and add all the terms up.

11 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0101 0101(2) =


(1 × 261 + 1 × 260 + 0 × 259 + 0 × 258 + 1 × 257 + 1 × 256 + 0 × 255 + 0 × 254 + 1 × 253 + 1 × 252 + 0 × 251 + 0 × 250 + 1 × 249 + 1 × 248 + 0 × 247 + 0 × 246 + 1 × 245 + 1 × 244 + 0 × 243 + 0 × 242 + 1 × 241 + 1 × 240 + 0 × 239 + 0 × 238 + 1 × 237 + 1 × 236 + 0 × 235 + 0 × 234 + 1 × 233 + 1 × 232 + 0 × 231 + 0 × 230 + 1 × 229 + 1 × 228 + 0 × 227 + 0 × 226 + 1 × 225 + 1 × 224 + 0 × 223 + 0 × 222 + 1 × 221 + 1 × 220 + 0 × 219 + 0 × 218 + 1 × 217 + 1 × 216 + 0 × 215 + 0 × 214 + 1 × 213 + 1 × 212 + 0 × 211 + 0 × 210 + 1 × 29 + 1 × 28 + 0 × 27 + 1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20)(10) =


(2 305 843 009 213 693 952 + 1 152 921 504 606 846 976 + 0 + 0 + 144 115 188 075 855 872 + 72 057 594 037 927 936 + 0 + 0 + 9 007 199 254 740 992 + 4 503 599 627 370 496 + 0 + 0 + 562 949 953 421 312 + 281 474 976 710 656 + 0 + 0 + 35 184 372 088 832 + 17 592 186 044 416 + 0 + 0 + 2 199 023 255 552 + 1 099 511 627 776 + 0 + 0 + 137 438 953 472 + 68 719 476 736 + 0 + 0 + 8 589 934 592 + 4 294 967 296 + 0 + 0 + 536 870 912 + 268 435 456 + 0 + 0 + 33 554 432 + 16 777 216 + 0 + 0 + 2 097 152 + 1 048 576 + 0 + 0 + 131 072 + 65 536 + 0 + 0 + 8 192 + 4 096 + 0 + 0 + 512 + 256 + 0 + 64 + 0 + 16 + 0 + 4 + 0 + 1)(10) =


(2 305 843 009 213 693 952 + 1 152 921 504 606 846 976 + 144 115 188 075 855 872 + 72 057 594 037 927 936 + 9 007 199 254 740 992 + 4 503 599 627 370 496 + 562 949 953 421 312 + 281 474 976 710 656 + 35 184 372 088 832 + 17 592 186 044 416 + 2 199 023 255 552 + 1 099 511 627 776 + 137 438 953 472 + 68 719 476 736 + 8 589 934 592 + 4 294 967 296 + 536 870 912 + 268 435 456 + 33 554 432 + 16 777 216 + 2 097 152 + 1 048 576 + 131 072 + 65 536 + 8 192 + 4 096 + 512 + 256 + 64 + 16 + 4 + 1)(10) =


3 689 348 814 741 910 357(10)

11 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0101 0101(2), Base 2 unsigned number converted and written as a base 10 decimal system equivalent:
11 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0101 0101(2) = 3 689 348 814 741 910 357(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.


How to convert unsigned binary numbers from binary system to decimal? Simply convert from base two to base ten.

To understand how to convert a number from base two to base ten, the easiest way is to do it through an example - convert the number from base two, 101 0011(2), to base ten:

  • Write bellow the binary number in base two, and above each bit that makes up the binary number write the corresponding power of 2 (numeral base) that its place value represents, starting with zero, from the right of the number (rightmost bit), walking to the left of the number, increasing each corresponding power of 2 by exactly one unit each time we move to the left:
  • powers of 2: 6 5 4 3 2 1 0
    digits: 1 0 1 0 0 1 1
  • Build the representation of the positive number in base 10, by taking each digit of the binary number, multiplying it by the corresponding power of 2 and then adding all the terms up:

    101 0011(2) =


    (1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20)(10) =


    (64 + 0 + 16 + 0 + 0 + 2 + 1)(10) =


    (64 + 16 + 2 + 1)(10) =


    83(10)

  • Binary unsigned number (base 2), 101 0011(2) = 83(10), unsigned positive integer in base 10