Unsigned: Binary -> Integer: 10 1010 1010 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 0010 Convert Base Two (2) Number to Base Ten (10), The Unsigned Binary Converted to a Positive Integer, Written in the Decimal System

The unsigned binary (in base two) 10 1010 1010 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 0010(2) to a positive integer (with no sign) in decimal system (in base ten) = ?

1. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent.

    • 257

      1
    • 256

      0
    • 255

      1
    • 254

      0
    • 253

      1
    • 252

      0
    • 251

      1
    • 250

      0
    • 249

      1
    • 248

      0
    • 247

      1
    • 246

      0
    • 245

      1
    • 244

      0
    • 243

      0
    • 242

      0
    • 241

      0
    • 240

      0
    • 239

      0
    • 238

      0
    • 237

      0
    • 236

      0
    • 235

      0
    • 234

      0
    • 233

      0
    • 232

      0
    • 231

      0
    • 230

      0
    • 229

      0
    • 228

      0
    • 227

      0
    • 226

      0
    • 225

      0
    • 224

      0
    • 223

      0
    • 222

      0
    • 221

      0
    • 220

      0
    • 219

      0
    • 218

      0
    • 217

      0
    • 216

      0
    • 215

      0
    • 214

      0
    • 213

      0
    • 212

      0
    • 211

      0
    • 210

      0
    • 29

      0
    • 28

      0
    • 27

      0
    • 26

      1
    • 25

      0
    • 24

      0
    • 23

      0
    • 22

      0
    • 21

      1
    • 20

      0

2. Multiply each bit by its corresponding power of 2 and add all the terms up.

10 1010 1010 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 0010(2) =


(1 × 257 + 0 × 256 + 1 × 255 + 0 × 254 + 1 × 253 + 0 × 252 + 1 × 251 + 0 × 250 + 1 × 249 + 0 × 248 + 1 × 247 + 0 × 246 + 1 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 0 × 241 + 0 × 240 + 0 × 239 + 0 × 238 + 0 × 237 + 0 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 0 × 231 + 0 × 230 + 0 × 229 + 0 × 228 + 0 × 227 + 0 × 226 + 0 × 225 + 0 × 224 + 0 × 223 + 0 × 222 + 0 × 221 + 0 × 220 + 0 × 219 + 0 × 218 + 0 × 217 + 0 × 216 + 0 × 215 + 0 × 214 + 0 × 213 + 0 × 212 + 0 × 211 + 0 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 0 × 20)(10) =


(144 115 188 075 855 872 + 0 + 36 028 797 018 963 968 + 0 + 9 007 199 254 740 992 + 0 + 2 251 799 813 685 248 + 0 + 562 949 953 421 312 + 0 + 140 737 488 355 328 + 0 + 35 184 372 088 832 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 64 + 0 + 0 + 0 + 0 + 2 + 0)(10) =


(144 115 188 075 855 872 + 36 028 797 018 963 968 + 9 007 199 254 740 992 + 2 251 799 813 685 248 + 562 949 953 421 312 + 140 737 488 355 328 + 35 184 372 088 832 + 64 + 2)(10) =


192 141 855 977 111 618(10)

The number 10 1010 1010 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 0010(2) converted from an unsigned binary (in base 2) and written as a positive integer (with no sign) in decimal system (in base ten):
10 1010 1010 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 0010(2) = 192 141 855 977 111 618(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

Convert unsigned binary numbers (base two) to positive integers in the decimal system (base ten)

How to convert an unsigned binary number (base two) to a positive integer in base ten:

1) Multiply each bit of the binary number by its corresponding power of 2 that its place value represents.

2) Add all the terms up to get the integer number in base ten.

The latest unsigned binary numbers converted and written as positive integers in decimal system (in base ten)

Convert the unsigned binary number written in base two, 10 1010 1010 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 0010, write it as a decimal system (written in base ten) positive integer number (whole number) Nov 28 11:07 UTC (GMT)
Convert the unsigned binary number written in base two, 11 0011 1110 1011, write it as a decimal system (written in base ten) positive integer number (whole number) Nov 28 11:07 UTC (GMT)
Convert the unsigned binary number written in base two, 10 1000 0001 1110 0001 1010 0000 0010 0000 0101 0111, write it as a decimal system (written in base ten) positive integer number (whole number) Nov 28 11:07 UTC (GMT)
Convert the unsigned binary number written in base two, 1111 1111 1111 1111 1011 1111 1101 1100, write it as a decimal system (written in base ten) positive integer number (whole number) Nov 28 11:07 UTC (GMT)
Convert the unsigned binary number written in base two, 110 0011 0001 1010 1011 0011 0011 0010, write it as a decimal system (written in base ten) positive integer number (whole number) Nov 28 11:07 UTC (GMT)
Convert the unsigned binary number written in base two, 110 0111 0100 0101 1000 1011 1010 0111, write it as a decimal system (written in base ten) positive integer number (whole number) Nov 28 11:07 UTC (GMT)
Convert the unsigned binary number written in base two, 11 1110 1001 0000 1011, write it as a decimal system (written in base ten) positive integer number (whole number) Nov 28 11:07 UTC (GMT)
Convert the unsigned binary number written in base two, 1100 0100 1000 0100 0110 1101 0010 0100, write it as a decimal system (written in base ten) positive integer number (whole number) Nov 28 11:07 UTC (GMT)
Convert the unsigned binary number written in base two, 100 0010 1011 0011 1111 1111 1110 0000, write it as a decimal system (written in base ten) positive integer number (whole number) Nov 28 11:07 UTC (GMT)
Convert the unsigned binary number written in base two, 1000 1111 1000 0010, write it as a decimal system (written in base ten) positive integer number (whole number) Nov 28 11:07 UTC (GMT)
All the unsigned binary numbers written in base two converted to base ten decimal numbers (as positive integers, or whole numbers)

How to convert unsigned binary numbers from binary system to decimal? Simply convert from base two to base ten.

To understand how to convert a number from base two to base ten, the easiest way is to do it through an example - convert the number from base two, 101 0011(2), to base ten:

  • Write bellow the binary number in base two, and above each bit that makes up the binary number write the corresponding power of 2 (numeral base) that its place value represents, starting with zero, from the right of the number (rightmost bit), walking to the left of the number, increasing each corresponding power of 2 by exactly one unit each time we move to the left:
  • powers of 2: 6 5 4 3 2 1 0
    digits: 1 0 1 0 0 1 1
  • Build the representation of the positive number in base 10, by taking each digit of the binary number, multiplying it by the corresponding power of 2 and then adding all the terms up:

    101 0011(2) =


    (1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20)(10) =


    (64 + 0 + 16 + 0 + 0 + 2 + 1)(10) =


    (64 + 16 + 2 + 1)(10) =


    83(10)

  • Binary unsigned number (base 2), 101 0011(2) = 83(10), unsigned positive integer in base 10