Base Two to Base Ten: Unsigned Base Two Binary Number 1010 0110 0010 1110 0000 1110 1000 0110 1100 1110 0000 0100 1010 0111 0000 0101 Converted and Written as a Base Ten Natural Number (Positive Integer, Without Sign), in Decimal System

Unsigned base two binary number 1010 0110 0010 1110 0000 1110 1000 0110 1100 1110 0000 0100 1010 0111 0000 0101(2) converted and written as a base ten number

1. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent.

  • 263

    1
  • 262

    0
  • 261

    1
  • 260

    0
  • 259

    0
  • 258

    1
  • 257

    1
  • 256

    0
  • 255

    0
  • 254

    0
  • 253

    1
  • 252

    0
  • 251

    1
  • 250

    1
  • 249

    1
  • 248

    0
  • 247

    0
  • 246

    0
  • 245

    0
  • 244

    0
  • 243

    1
  • 242

    1
  • 241

    1
  • 240

    0
  • 239

    1
  • 238

    0
  • 237

    0
  • 236

    0
  • 235

    0
  • 234

    1
  • 233

    1
  • 232

    0
  • 231

    1
  • 230

    1
  • 229

    0
  • 228

    0
  • 227

    1
  • 226

    1
  • 225

    1
  • 224

    0
  • 223

    0
  • 222

    0
  • 221

    0
  • 220

    0
  • 219

    0
  • 218

    1
  • 217

    0
  • 216

    0
  • 215

    1
  • 214

    0
  • 213

    1
  • 212

    0
  • 211

    0
  • 210

    1
  • 29

    1
  • 28

    1
  • 27

    0
  • 26

    0
  • 25

    0
  • 24

    0
  • 23

    0
  • 22

    1
  • 21

    0
  • 20

    1

2. Multiply each bit by its corresponding power of 2 and add all the terms up.

1010 0110 0010 1110 0000 1110 1000 0110 1100 1110 0000 0100 1010 0111 0000 0101(2) =


(1 × 263 + 0 × 262 + 1 × 261 + 0 × 260 + 0 × 259 + 1 × 258 + 1 × 257 + 0 × 256 + 0 × 255 + 0 × 254 + 1 × 253 + 0 × 252 + 1 × 251 + 1 × 250 + 1 × 249 + 0 × 248 + 0 × 247 + 0 × 246 + 0 × 245 + 0 × 244 + 1 × 243 + 1 × 242 + 1 × 241 + 0 × 240 + 1 × 239 + 0 × 238 + 0 × 237 + 0 × 236 + 0 × 235 + 1 × 234 + 1 × 233 + 0 × 232 + 1 × 231 + 1 × 230 + 0 × 229 + 0 × 228 + 1 × 227 + 1 × 226 + 1 × 225 + 0 × 224 + 0 × 223 + 0 × 222 + 0 × 221 + 0 × 220 + 0 × 219 + 1 × 218 + 0 × 217 + 0 × 216 + 1 × 215 + 0 × 214 + 1 × 213 + 0 × 212 + 0 × 211 + 1 × 210 + 1 × 29 + 1 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20)(10) =


(9 223 372 036 854 775 808 + 0 + 2 305 843 009 213 693 952 + 0 + 0 + 288 230 376 151 711 744 + 144 115 188 075 855 872 + 0 + 0 + 0 + 9 007 199 254 740 992 + 0 + 2 251 799 813 685 248 + 1 125 899 906 842 624 + 562 949 953 421 312 + 0 + 0 + 0 + 0 + 0 + 8 796 093 022 208 + 4 398 046 511 104 + 2 199 023 255 552 + 0 + 549 755 813 888 + 0 + 0 + 0 + 0 + 17 179 869 184 + 8 589 934 592 + 0 + 2 147 483 648 + 1 073 741 824 + 0 + 0 + 134 217 728 + 67 108 864 + 33 554 432 + 0 + 0 + 0 + 0 + 0 + 0 + 262 144 + 0 + 0 + 32 768 + 0 + 8 192 + 0 + 0 + 1 024 + 512 + 256 + 0 + 0 + 0 + 0 + 0 + 4 + 0 + 1)(10) =


(9 223 372 036 854 775 808 + 2 305 843 009 213 693 952 + 288 230 376 151 711 744 + 144 115 188 075 855 872 + 9 007 199 254 740 992 + 2 251 799 813 685 248 + 1 125 899 906 842 624 + 562 949 953 421 312 + 8 796 093 022 208 + 4 398 046 511 104 + 2 199 023 255 552 + 549 755 813 888 + 17 179 869 184 + 8 589 934 592 + 2 147 483 648 + 1 073 741 824 + 134 217 728 + 67 108 864 + 33 554 432 + 262 144 + 32 768 + 8 192 + 1 024 + 512 + 256 + 4 + 1)(10) =


11 974 524 431 369 545 477(10)

The number 1010 0110 0010 1110 0000 1110 1000 0110 1100 1110 0000 0100 1010 0111 0000 0101(2) converted from an unsigned binary (in base 2) and written as a positive integer (with no sign) in decimal system (in base ten):
1010 0110 0010 1110 0000 1110 1000 0110 1100 1110 0000 0100 1010 0111 0000 0101(2) = 11 974 524 431 369 545 477(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

How to convert unsigned binary numbers from binary system to decimal? Simply convert from base two to base ten.

To understand how to convert a number from base two to base ten, the easiest way is to do it through an example - convert the number from base two, 101 0011(2), to base ten:

  • Write bellow the binary number in base two, and above each bit that makes up the binary number write the corresponding power of 2 (numeral base) that its place value represents, starting with zero, from the right of the number (rightmost bit), walking to the left of the number, increasing each corresponding power of 2 by exactly one unit each time we move to the left:
  • powers of 2: 6 5 4 3 2 1 0
    digits: 1 0 1 0 0 1 1
  • Build the representation of the positive number in base 10, by taking each digit of the binary number, multiplying it by the corresponding power of 2 and then adding all the terms up:

    101 0011(2) =


    (1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20)(10) =


    (64 + 0 + 16 + 0 + 0 + 2 + 1)(10) =


    (64 + 16 + 2 + 1)(10) =


    83(10)

  • Binary unsigned number (base 2), 101 0011(2) = 83(10), unsigned positive integer in base 10