## Unsigned binary (base 2) 100 1011 1010_{(2)} to a positive integer (no sign) in decimal system (in base 10) = ?

### 1. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:

2^{10}

1 2^{9}

0 2^{8}

0 2^{7}

1 2^{6}

0 2^{5}

1 2^{4}

1 2^{3}

1 2^{2}

0 2^{1}

1 2^{0}

0

### 2. Multiply each bit by its corresponding power of 2 and add all the terms up:

#### 100 1011 1010_{(2)} =

#### (1 × 2^{10} + 0 × 2^{9} + 0 × 2^{8} + 1 × 2^{7} + 0 × 2^{6} + 1 × 2^{5} + 1 × 2^{4} + 1 × 2^{3} + 0 × 2^{2} + 1 × 2^{1} + 0 × 2^{0})_{(10)} =

#### (1 024 + 0 + 0 + 128 + 0 + 32 + 16 + 8 + 0 + 2 + 0)_{(10)} =

#### (1 024 + 128 + 32 + 16 + 8 + 2)_{(10)} =

#### 1 210_{(10)}