Unsigned Base Two Binary Number 100 0011 1111 1010 0100 0110 1101 1110 Converted and Written as a Base Ten Natural Number (Positive Integer, Without Sign), in Decimal System

Unsigned base two binary number 100 0011 1111 1010 0100 0110 1101 1110(2) converted and written as a base ten number

1. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent.

  • 230

    1
  • 229

    0
  • 228

    0
  • 227

    0
  • 226

    0
  • 225

    1
  • 224

    1
  • 223

    1
  • 222

    1
  • 221

    1
  • 220

    1
  • 219

    1
  • 218

    0
  • 217

    1
  • 216

    0
  • 215

    0
  • 214

    1
  • 213

    0
  • 212

    0
  • 211

    0
  • 210

    1
  • 29

    1
  • 28

    0
  • 27

    1
  • 26

    1
  • 25

    0
  • 24

    1
  • 23

    1
  • 22

    1
  • 21

    1
  • 20

    0

2. Multiply each bit by its corresponding power of 2 and add all the terms up.

100 0011 1111 1010 0100 0110 1101 1110(2) =


(1 × 230 + 0 × 229 + 0 × 228 + 0 × 227 + 0 × 226 + 1 × 225 + 1 × 224 + 1 × 223 + 1 × 222 + 1 × 221 + 1 × 220 + 1 × 219 + 0 × 218 + 1 × 217 + 0 × 216 + 0 × 215 + 1 × 214 + 0 × 213 + 0 × 212 + 0 × 211 + 1 × 210 + 1 × 29 + 0 × 28 + 1 × 27 + 1 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20)(10) =


(1 073 741 824 + 0 + 0 + 0 + 0 + 33 554 432 + 16 777 216 + 8 388 608 + 4 194 304 + 2 097 152 + 1 048 576 + 524 288 + 0 + 131 072 + 0 + 0 + 16 384 + 0 + 0 + 0 + 1 024 + 512 + 0 + 128 + 64 + 0 + 16 + 8 + 4 + 2 + 0)(10) =


(1 073 741 824 + 33 554 432 + 16 777 216 + 8 388 608 + 4 194 304 + 2 097 152 + 1 048 576 + 524 288 + 131 072 + 16 384 + 1 024 + 512 + 128 + 64 + 16 + 8 + 4 + 2)(10) =


1 140 475 614(10)

The number 100 0011 1111 1010 0100 0110 1101 1110(2) converted from an unsigned binary (in base 2) and written as a positive integer (with no sign) in decimal system (in base ten):
100 0011 1111 1010 0100 0110 1101 1110(2) = 1 140 475 614(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

How to convert unsigned binary numbers from binary system to decimal? Simply convert from base two to base ten.

To understand how to convert a number from base two to base ten, the easiest way is to do it through an example - convert the number from base two, 101 0011(2), to base ten:

  • Write bellow the binary number in base two, and above each bit that makes up the binary number write the corresponding power of 2 (numeral base) that its place value represents, starting with zero, from the right of the number (rightmost bit), walking to the left of the number, increasing each corresponding power of 2 by exactly one unit each time we move to the left:
  • powers of 2: 6 5 4 3 2 1 0
    digits: 1 0 1 0 0 1 1
  • Build the representation of the positive number in base 10, by taking each digit of the binary number, multiplying it by the corresponding power of 2 and then adding all the terms up:

    101 0011(2) =


    (1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20)(10) =


    (64 + 0 + 16 + 0 + 0 + 2 + 1)(10) =


    (64 + 16 + 2 + 1)(10) =


    83(10)

  • Binary unsigned number (base 2), 101 0011(2) = 83(10), unsigned positive integer in base 10