### 2. Multiply each bit by its corresponding power of 2 and add all the terms up.

#### 100 0010 0100 1000 0000 1111 1111 0011_{(2)} =

#### (1 × 2^{30} + 0 × 2^{29} + 0 × 2^{28} + 0 × 2^{27} + 0 × 2^{26} + 1 × 2^{25} + 0 × 2^{24} + 0 × 2^{23} + 1 × 2^{22} + 0 × 2^{21} + 0 × 2^{20} + 1 × 2^{19} + 0 × 2^{18} + 0 × 2^{17} + 0 × 2^{16} + 0 × 2^{15} + 0 × 2^{14} + 0 × 2^{13} + 0 × 2^{12} + 1 × 2^{11} + 1 × 2^{10} + 1 × 2^{9} + 1 × 2^{8} + 1 × 2^{7} + 1 × 2^{6} + 1 × 2^{5} + 1 × 2^{4} + 0 × 2^{3} + 0 × 2^{2} + 1 × 2^{1} + 1 × 2^{0})_{(10)} =

#### (1 073 741 824 + 0 + 0 + 0 + 0 + 33 554 432 + 0 + 0 + 4 194 304 + 0 + 0 + 524 288 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 2 048 + 1 024 + 512 + 256 + 128 + 64 + 32 + 16 + 0 + 0 + 2 + 1)_{(10)} =

#### (1 073 741 824 + 33 554 432 + 4 194 304 + 524 288 + 2 048 + 1 024 + 512 + 256 + 128 + 64 + 32 + 16 + 2 + 1)_{(10)} =

#### 1 112 018 931_{(10)}

## The number 100 0010 0100 1000 0000 1111 1111 0011_{(2)} converted from an unsigned binary (in base 2) and written as a positive integer (with no sign) in decimal system (in base ten):

100 0010 0100 1000 0000 1111 1111 0011_{(2)} = 1 112 018 931_{(10)}

Spaces were used to group digits: for binary, by 4, for decimal, by 3.