2. Multiply each bit by its corresponding power of 2 and add all the terms up.
100 0000 0000 0000 0100 0000 0000 0000 0100 0000 0000 0000 0100 0000 0010 0011(2) =
(1 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 0 × 255 + 0 × 254 + 0 × 253 + 0 × 252 + 0 × 251 + 0 × 250 + 0 × 249 + 0 × 248 + 0 × 247 + 1 × 246 + 0 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 0 × 241 + 0 × 240 + 0 × 239 + 0 × 238 + 0 × 237 + 0 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 0 × 231 + 1 × 230 + 0 × 229 + 0 × 228 + 0 × 227 + 0 × 226 + 0 × 225 + 0 × 224 + 0 × 223 + 0 × 222 + 0 × 221 + 0 × 220 + 0 × 219 + 0 × 218 + 0 × 217 + 0 × 216 + 0 × 215 + 1 × 214 + 0 × 213 + 0 × 212 + 0 × 211 + 0 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20)(10) =
(4 611 686 018 427 387 904 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 70 368 744 177 664 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 073 741 824 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 16 384 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 32 + 0 + 0 + 0 + 2 + 1)(10) =
(4 611 686 018 427 387 904 + 70 368 744 177 664 + 1 073 741 824 + 16 384 + 32 + 2 + 1)(10) =
4 611 756 388 245 323 811(10)
The number 100 0000 0000 0000 0100 0000 0000 0000 0100 0000 0000 0000 0100 0000 0010 0011(2) converted from an unsigned binary (in base 2) and written as a positive integer (with no sign) in decimal system (in base ten):
100 0000 0000 0000 0100 0000 0000 0000 0100 0000 0000 0000 0100 0000 0010 0011(2) = 4 611 756 388 245 323 811(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.