1. Is this a positive or a negative number?
1111 1111 1111 1111 1111 1111 1111 1111 1101 0110 1010 1111 1010 0101 0110 0110 is the binary representation of a negative integer, on 64 bits (8 Bytes).
In a signed binary in two's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.
2. Get the binary representation in one's complement.
* Run this step only if the number is negative *
Note on binary subtraction rules:
11 - 1 = 10; 10 - 1 = 1; 1 - 0 = 1; 1 - 1 = 0.
Subtract 1 from the initial binary number.
1111 1111 1111 1111 1111 1111 1111 1111 1101 0110 1010 1111 1010 0101 0110 0110 - 1 = 1111 1111 1111 1111 1111 1111 1111 1111 1101 0110 1010 1111 1010 0101 0110 0101
3. Get the binary representation of the positive (unsigned) number.
* Run this step only if the number is negative *
Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
!(1111 1111 1111 1111 1111 1111 1111 1111 1101 0110 1010 1111 1010 0101 0110 0101) = 0000 0000 0000 0000 0000 0000 0000 0000 0010 1001 0101 0000 0101 1010 1001 1010
4. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
263
0 262
0 261
0 260
0 259
0 258
0 257
0 256
0 255
0 254
0 253
0 252
0 251
0 250
0 249
0 248
0 247
0 246
0 245
0 244
0 243
0 242
0 241
0 240
0 239
0 238
0 237
0 236
0 235
0 234
0 233
0 232
0 231
0 230
0 229
1 228
0 227
1 226
0 225
0 224
1 223
0 222
1 221
0 220
1 219
0 218
0 217
0 216
0 215
0 214
1 213
0 212
1 211
1 210
0 29
1 28
0 27
1 26
0 25
0 24
1 23
1 22
0 21
1 20
0
5. Multiply each bit by its corresponding power of 2 and add all the terms up.
0000 0000 0000 0000 0000 0000 0000 0000 0010 1001 0101 0000 0101 1010 1001 1010(2) =
(0 × 263 + 0 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 0 × 255 + 0 × 254 + 0 × 253 + 0 × 252 + 0 × 251 + 0 × 250 + 0 × 249 + 0 × 248 + 0 × 247 + 0 × 246 + 0 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 0 × 241 + 0 × 240 + 0 × 239 + 0 × 238 + 0 × 237 + 0 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 0 × 231 + 0 × 230 + 1 × 229 + 0 × 228 + 1 × 227 + 0 × 226 + 0 × 225 + 1 × 224 + 0 × 223 + 1 × 222 + 0 × 221 + 1 × 220 + 0 × 219 + 0 × 218 + 0 × 217 + 0 × 216 + 0 × 215 + 1 × 214 + 0 × 213 + 1 × 212 + 1 × 211 + 0 × 210 + 1 × 29 + 0 × 28 + 1 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20)(10) =
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 536 870 912 + 0 + 134 217 728 + 0 + 0 + 16 777 216 + 0 + 4 194 304 + 0 + 1 048 576 + 0 + 0 + 0 + 0 + 0 + 16 384 + 0 + 4 096 + 2 048 + 0 + 512 + 0 + 128 + 0 + 0 + 16 + 8 + 0 + 2 + 0)(10) =
(536 870 912 + 134 217 728 + 16 777 216 + 4 194 304 + 1 048 576 + 16 384 + 4 096 + 2 048 + 512 + 128 + 16 + 8 + 2)(10) =
693 131 930(10)
6. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
1111 1111 1111 1111 1111 1111 1111 1111 1101 0110 1010 1111 1010 0101 0110 0110(2) = -693 131 930(10)
The signed binary number in two's complement representation 1111 1111 1111 1111 1111 1111 1111 1111 1101 0110 1010 1111 1010 0101 0110 0110(2) converted and written as an integer in decimal system (base ten):
1111 1111 1111 1111 1111 1111 1111 1111 1101 0110 1010 1111 1010 0101 0110 0110(2) = -693 131 930(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.