1110 1100 1101 1010 Signed Binary Number in Two's Complement Representation, Converted and Written as a Decimal System Integer Number (in Base Ten). Steps Explained in Detail
Signed binary in two's complement representation 1110 1100 1101 1010(2) converted to an integer in decimal system (in base ten) = ?
The steps we'll go through to make the conversion:
Get the binary representations.
Map the unsigned binary number's digits.
Multiply each bit by its corresponding power of 2 and add all the terms up.
1. Is this a positive or a negative number?
In a signed binary in two's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.
1110 1100 1101 1010 is the binary representation of a negative integer, on 16 bits (2 Bytes).
2. Get the binary representation in one's complement.
* Run this step only if the number is negative *
Note on binary subtraction rules:
11 - 1 = 10; 10 - 1 = 1; 1 - 0 = 1; 1 - 1 = 0.
Subtract 1 from the initial binary number.
1110 1100 1101 1010 - 1 = 1110 1100 1101 1001
3. Get the binary representation of the positive (unsigned) number.
* Run this step only if the number is negative *
Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
!(1110 1100 1101 1001) = 0001 0011 0010 0110
4. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
215
0 214
0 213
0 212
1 211
0 210
0 29
1 28
1 27
0 26
0 25
1 24
0 23
0 22
1 21
1 20
0
5. Multiply each bit by its corresponding power of 2 and add all the terms up.
0001 0011 0010 0110(2) =
(0 × 215 + 0 × 214 + 0 × 213 + 1 × 212 + 0 × 211 + 0 × 210 + 1 × 29 + 1 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20)(10) =
(0 + 0 + 0 + 4 096 + 0 + 0 + 512 + 256 + 0 + 0 + 32 + 0 + 0 + 4 + 2 + 0)(10) =
(4 096 + 512 + 256 + 32 + 4 + 2)(10) =
4 902(10)
6. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
1110 1100 1101 1010(2) = -4 902(10)
The signed binary number in two's complement representation 1110 1100 1101 1010(2) converted and written as an integer in decimal system (base ten):
1110 1100 1101 1010(2) = -4 902(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.
Convert signed binary numbers in two's complement representation to decimal system (base ten) integers
Binary number's length must be: 2, 4, 8, 16, 32, 64 - or else extra bits on 0 are added in front (to the left).
How to convert a signed binary number in two's complement representation to an integer in base ten:
1) In a signed binary two's complement, first bit (leftmost) indicates the sign, 1 = negative, 0 = positive.
2) Get the signed binary representation in one's complement, subtract 1 from the initial number.
3) Construct the unsigned binary number: flip all the bits in the signed binary one's complement representation (reversing the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s.
4) Multiply each bit of the binary number by its corresponding power of 2 that its place value represents.
5) Add all the terms up to get the positive integer number in base ten.
6) Adjust the sign of the integer number by the first bit of the initial binary number.
The latest binary numbers written in two\'s complement representation converted to signed integers written in decimal system (in base ten)
Convert the signed binary number written in two's complement representation 1110 1100 1101 1010, write it as a decimal system (base ten) integer | Oct 03 13:52 UTC (GMT) |
Convert the signed binary number written in two's complement representation 0001 0100 0111 1010 1110 0001 0100 1010, write it as a decimal system (base ten) integer | Oct 03 13:52 UTC (GMT) |
Convert the signed binary number written in two's complement representation 0000 0000 0010 0001 1111 0010 1001 1111, write it as a decimal system (base ten) integer | Oct 03 13:52 UTC (GMT) |
Convert the signed binary number written in two's complement representation 0010 1100 1011 0100 0000 0000 0001 0101, write it as a decimal system (base ten) integer | Oct 03 13:51 UTC (GMT) |
Convert the signed binary number written in two's complement representation 0000 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1011 1110 1010, write it as a decimal system (base ten) integer | Oct 03 13:51 UTC (GMT) |
Convert the signed binary number written in two's complement representation 1000 0110 1110 1111, write it as a decimal system (base ten) integer | Oct 03 13:51 UTC (GMT) |
Convert the signed binary number written in two's complement representation 0100 0010 0101 0010 1111 1111 1110 1011, write it as a decimal system (base ten) integer | Oct 03 13:51 UTC (GMT) |
Convert the signed binary number written in two's complement representation 1111 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100, write it as a decimal system (base ten) integer | Oct 03 13:51 UTC (GMT) |
Convert the signed binary number written in two's complement representation 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 1000 1010, write it as a decimal system (base ten) integer | Oct 03 13:51 UTC (GMT) |
Convert the signed binary number written in two's complement representation 0010 1100 1000 0010, write it as a decimal system (base ten) integer | Oct 03 13:51 UTC (GMT) |
All the signed binary numbers written in two's complement representation converted to decimal system (base ten) integers |
How to convert signed binary numbers in two's complement representation from binary system to decimal
To understand how to convert a signed binary number in two's complement representation from the binary system to decimal (base ten), the easiest way is to do it by an example - convert binary, 1101 1110, to base ten:
Available Base Conversions Between Decimal and Binary Systems
Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):
1. Integer -> Binary
2. Decimal -> Binary
3. Binary -> Integer
4. Binary -> Decimal