What are the steps to convert the signed binary in two's (2's) complement representation to an integer in decimal system (in base ten)?
1. Is this a positive or a negative number?
1100 1010 1111 1110 1010 1010 0010 1100 is the binary representation of a negative integer, on 32 bits (4 Bytes).
- In a signed binary in two's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.
2. Get the binary representation in one's complement.
* Run this step only if the number is negative
- Note on binary subtraction rules:
- 11 - 1 = 10; 10 - 1 = 01; 1 - 0 = 1; 1 - 1 = 0.
Subtract 1 from the initial binary number.
1100 1010 1111 1110 1010 1010 0010 1100 - 1 = 1100 1010 1111 1110 1010 1010 0010 1011
3. Get the binary representation of the positive (unsigned) number.
* Run this step only if the number is negative
Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
!(1100 1010 1111 1110 1010 1010 0010 1011) = 0011 0101 0000 0001 0101 0101 1101 0100
4. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
231
0 230
0 229
1 228
1 227
0 226
1 225
0 224
1 223
0 222
0 221
0 220
0 219
0 218
0 217
0 216
1 215
0 214
1 213
0 212
1 211
0 210
1 29
0 28
1 27
1 26
1 25
0 24
1 23
0 22
1 21
0 20
0
5. Multiply each bit by its corresponding power of 2 and add all the terms up.
0011 0101 0000 0001 0101 0101 1101 0100(2) =
(0 × 231 + 0 × 230 + 1 × 229 + 1 × 228 + 0 × 227 + 1 × 226 + 0 × 225 + 1 × 224 + 0 × 223 + 0 × 222 + 0 × 221 + 0 × 220 + 0 × 219 + 0 × 218 + 0 × 217 + 1 × 216 + 0 × 215 + 1 × 214 + 0 × 213 + 1 × 212 + 0 × 211 + 1 × 210 + 0 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 0 × 20)(10) =
(0 + 0 + 536 870 912 + 268 435 456 + 0 + 67 108 864 + 0 + 16 777 216 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 65 536 + 0 + 16 384 + 0 + 4 096 + 0 + 1 024 + 0 + 256 + 128 + 64 + 0 + 16 + 0 + 4 + 0 + 0)(10) =
(536 870 912 + 268 435 456 + 67 108 864 + 16 777 216 + 65 536 + 16 384 + 4 096 + 1 024 + 256 + 128 + 64 + 16 + 4)(10) =
889 279 956(10)
6. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
1100 1010 1111 1110 1010 1010 0010 1100(2) = -889 279 956(10)
The number 1100 1010 1111 1110 1010 1010 0010 1100(2), signed binary in two's (2's) complement representation, converted and written as an integer in decimal system (base ten):
1100 1010 1111 1110 1010 1010 0010 1100(2) = -889 279 956(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.