Convert 0011 1111 1111 1111 1111 1111 1111 1110 1000 0000 0000 0000 0000 0000 0000 0011, Signed Binary in Two's (2's) Complement Representation on 64 Bit, To Decimal
How to convert 0011 1111 1111 1111 1111 1111 1111 1110 1000 0000 0000 0000 0000 0000 0000 0011(2), signed binary in two's (2's) complement representation, to decimal
What are the steps to convert the signed binary in two's (2's) complement representation to an integer in decimal system (in base ten)?
1. Is this a positive or a negative number?
0011 1111 1111 1111 1111 1111 1111 1110 1000 0000 0000 0000 0000 0000 0000 0011 is the binary representation of a positive integer, on 64 bits (8 Bytes).
- In a signed binary in two's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.
2. Get the binary representation in one's complement.
* Run this step only if the number is negative
- Note on binary subtraction rules:
- 11 - 1 = 10; 10 - 1 = 01; 1 - 0 = 1; 1 - 1 = 0.
Subtract 1 from the initial binary number.
* Not the case - the number is positive
3. Get the binary representation of the positive (unsigned) number.
* Run this step only if the number is negative
Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
* Not the case - the number is positive
4. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
263
0 262
0 261
1 260
1 259
1 258
1 257
1 256
1 255
1 254
1 253
1 252
1 251
1 250
1 249
1 248
1 247
1 246
1 245
1 244
1 243
1 242
1 241
1 240
1 239
1 238
1 237
1 236
1 235
1 234
1 233
1 232
0 231
1 230
0 229
0 228
0 227
0 226
0 225
0 224
0 223
0 222
0 221
0 220
0 219
0 218
0 217
0 216
0 215
0 214
0 213
0 212
0 211
0 210
0 29
0 28
0 27
0 26
0 25
0 24
0 23
0 22
0 21
1 20
1
5. Multiply each bit by its corresponding power of 2 and add all the terms up.
0011 1111 1111 1111 1111 1111 1111 1110 1000 0000 0000 0000 0000 0000 0000 0011(2) =
(0 × 263 + 0 × 262 + 1 × 261 + 1 × 260 + 1 × 259 + 1 × 258 + 1 × 257 + 1 × 256 + 1 × 255 + 1 × 254 + 1 × 253 + 1 × 252 + 1 × 251 + 1 × 250 + 1 × 249 + 1 × 248 + 1 × 247 + 1 × 246 + 1 × 245 + 1 × 244 + 1 × 243 + 1 × 242 + 1 × 241 + 1 × 240 + 1 × 239 + 1 × 238 + 1 × 237 + 1 × 236 + 1 × 235 + 1 × 234 + 1 × 233 + 0 × 232 + 1 × 231 + 0 × 230 + 0 × 229 + 0 × 228 + 0 × 227 + 0 × 226 + 0 × 225 + 0 × 224 + 0 × 223 + 0 × 222 + 0 × 221 + 0 × 220 + 0 × 219 + 0 × 218 + 0 × 217 + 0 × 216 + 0 × 215 + 0 × 214 + 0 × 213 + 0 × 212 + 0 × 211 + 0 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20)(10) =
(0 + 0 + 2 305 843 009 213 693 952 + 1 152 921 504 606 846 976 + 576 460 752 303 423 488 + 288 230 376 151 711 744 + 144 115 188 075 855 872 + 72 057 594 037 927 936 + 36 028 797 018 963 968 + 18 014 398 509 481 984 + 9 007 199 254 740 992 + 4 503 599 627 370 496 + 2 251 799 813 685 248 + 1 125 899 906 842 624 + 562 949 953 421 312 + 281 474 976 710 656 + 140 737 488 355 328 + 70 368 744 177 664 + 35 184 372 088 832 + 17 592 186 044 416 + 8 796 093 022 208 + 4 398 046 511 104 + 2 199 023 255 552 + 1 099 511 627 776 + 549 755 813 888 + 274 877 906 944 + 137 438 953 472 + 68 719 476 736 + 34 359 738 368 + 17 179 869 184 + 8 589 934 592 + 0 + 2 147 483 648 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 2 + 1)(10) =
(2 305 843 009 213 693 952 + 1 152 921 504 606 846 976 + 576 460 752 303 423 488 + 288 230 376 151 711 744 + 144 115 188 075 855 872 + 72 057 594 037 927 936 + 36 028 797 018 963 968 + 18 014 398 509 481 984 + 9 007 199 254 740 992 + 4 503 599 627 370 496 + 2 251 799 813 685 248 + 1 125 899 906 842 624 + 562 949 953 421 312 + 281 474 976 710 656 + 140 737 488 355 328 + 70 368 744 177 664 + 35 184 372 088 832 + 17 592 186 044 416 + 8 796 093 022 208 + 4 398 046 511 104 + 2 199 023 255 552 + 1 099 511 627 776 + 549 755 813 888 + 274 877 906 944 + 137 438 953 472 + 68 719 476 736 + 34 359 738 368 + 17 179 869 184 + 8 589 934 592 + 2 147 483 648 + 2 + 1)(10) =
4 611 686 011 984 936 963(10)
6. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
0011 1111 1111 1111 1111 1111 1111 1110 1000 0000 0000 0000 0000 0000 0000 0011(2) = 4 611 686 011 984 936 963(10)
The number 0011 1111 1111 1111 1111 1111 1111 1110 1000 0000 0000 0000 0000 0000 0000 0011(2), signed binary in two's (2's) complement representation, converted and written as an integer in decimal system (base ten):
0011 1111 1111 1111 1111 1111 1111 1110 1000 0000 0000 0000 0000 0000 0000 0011(2) = 4 611 686 011 984 936 963(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.