In a signed binary in two's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.
2. Get the binary representation in one's complement.
* Run this step only if the number is negative *
Note on binary subtraction rules:
11 - 1 = 10; 10 - 1 = 1; 1 - 0 = 1; 1 - 1 = 0.
Subtract 1 from the initial binary number.
* Not the case - the number is positive *
3. Get the binary representation of the positive (unsigned) number.
* Run this step only if the number is negative *
Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
* Not the case - the number is positive *
4. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
231
0 230
0 229
0 228
0 227
1 226
0 225
1 224
0 223
1 222
1 221
0 220
1 219
0 218
0 217
0 216
0 215
1 214
1 213
1 212
1 211
1 210
1 29
1 28
1 27
1 26
0 25
1 24
1 23
1 22
0 21
1 20
0
5. Multiply each bit by its corresponding power of 2 and add all the terms up.
0000 1010 1101 0000 1111 1111 1011 1010(2) =
(0 × 231 + 0 × 230 + 0 × 229 + 0 × 228 + 1 × 227 + 0 × 226 + 1 × 225 + 0 × 224 + 1 × 223 + 1 × 222 + 0 × 221 + 1 × 220 + 0 × 219 + 0 × 218 + 0 × 217 + 0 × 216 + 1 × 215 + 1 × 214 + 1 × 213 + 1 × 212 + 1 × 211 + 1 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20)(10) =
(0 + 0 + 0 + 0 + 134 217 728 + 0 + 33 554 432 + 0 + 8 388 608 + 4 194 304 + 0 + 1 048 576 + 0 + 0 + 0 + 0 + 32 768 + 16 384 + 8 192 + 4 096 + 2 048 + 1 024 + 512 + 256 + 128 + 0 + 32 + 16 + 8 + 0 + 2 + 0)(10) =
(134 217 728 + 33 554 432 + 8 388 608 + 4 194 304 + 1 048 576 + 32 768 + 16 384 + 8 192 + 4 096 + 2 048 + 1 024 + 512 + 256 + 128 + 32 + 16 + 8 + 2)(10) =
181 469 114(10)
6. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
0000 1010 1101 0000 1111 1111 1011 1010(2) = 181 469 114(10)
The signed binary number in two's complement representation 0000 1010 1101 0000 1111 1111 1011 1010(2) converted and written as an integer in decimal system (base ten):
0000 1010 1101 0000 1111 1111 1011 1010(2) = 181 469 114(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.