Two's Complement: Binary ↘ Integer: 0000 0000 1101 0010 1101 1000 1101 1110 1110 1100 1100 1010 1111 0100 1100 0101 Signed Binary Number in Two's Complement Representation, Converted and Written as a Decimal System Integer (in Base Ten)

Signed binary in two's complement representation 0000 0000 1101 0010 1101 1000 1101 1110 1110 1100 1100 1010 1111 0100 1100 0101(2) converted to an integer in decimal system (in base ten) = ?

1. Is this a positive or a negative number?

0000 0000 1101 0010 1101 1000 1101 1110 1110 1100 1100 1010 1111 0100 1100 0101 is the binary representation of a positive integer, on 64 bits (8 Bytes).


In a signed binary in two's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.


2. Get the binary representation in one's complement.

* Run this step only if the number is negative *

Note on binary subtraction rules:

11 - 1 = 10; 10 - 1 = 1; 1 - 0 = 1; 1 - 1 = 0.


Subtract 1 from the initial binary number.

* Not the case - the number is positive *


3. Get the binary representation of the positive (unsigned) number.

* Run this step only if the number is negative *

Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:

* Not the case - the number is positive *


4. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:

  • 263

    0
  • 262

    0
  • 261

    0
  • 260

    0
  • 259

    0
  • 258

    0
  • 257

    0
  • 256

    0
  • 255

    1
  • 254

    1
  • 253

    0
  • 252

    1
  • 251

    0
  • 250

    0
  • 249

    1
  • 248

    0
  • 247

    1
  • 246

    1
  • 245

    0
  • 244

    1
  • 243

    1
  • 242

    0
  • 241

    0
  • 240

    0
  • 239

    1
  • 238

    1
  • 237

    0
  • 236

    1
  • 235

    1
  • 234

    1
  • 233

    1
  • 232

    0
  • 231

    1
  • 230

    1
  • 229

    1
  • 228

    0
  • 227

    1
  • 226

    1
  • 225

    0
  • 224

    0
  • 223

    1
  • 222

    1
  • 221

    0
  • 220

    0
  • 219

    1
  • 218

    0
  • 217

    1
  • 216

    0
  • 215

    1
  • 214

    1
  • 213

    1
  • 212

    1
  • 211

    0
  • 210

    1
  • 29

    0
  • 28

    0
  • 27

    1
  • 26

    1
  • 25

    0
  • 24

    0
  • 23

    0
  • 22

    1
  • 21

    0
  • 20

    1

5. Multiply each bit by its corresponding power of 2 and add all the terms up.

0000 0000 1101 0010 1101 1000 1101 1110 1110 1100 1100 1010 1111 0100 1100 0101(2) =


(0 × 263 + 0 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 1 × 255 + 1 × 254 + 0 × 253 + 1 × 252 + 0 × 251 + 0 × 250 + 1 × 249 + 0 × 248 + 1 × 247 + 1 × 246 + 0 × 245 + 1 × 244 + 1 × 243 + 0 × 242 + 0 × 241 + 0 × 240 + 1 × 239 + 1 × 238 + 0 × 237 + 1 × 236 + 1 × 235 + 1 × 234 + 1 × 233 + 0 × 232 + 1 × 231 + 1 × 230 + 1 × 229 + 0 × 228 + 1 × 227 + 1 × 226 + 0 × 225 + 0 × 224 + 1 × 223 + 1 × 222 + 0 × 221 + 0 × 220 + 1 × 219 + 0 × 218 + 1 × 217 + 0 × 216 + 1 × 215 + 1 × 214 + 1 × 213 + 1 × 212 + 0 × 211 + 1 × 210 + 0 × 29 + 0 × 28 + 1 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20)(10) =


(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 36 028 797 018 963 968 + 18 014 398 509 481 984 + 0 + 4 503 599 627 370 496 + 0 + 0 + 562 949 953 421 312 + 0 + 140 737 488 355 328 + 70 368 744 177 664 + 0 + 17 592 186 044 416 + 8 796 093 022 208 + 0 + 0 + 0 + 549 755 813 888 + 274 877 906 944 + 0 + 68 719 476 736 + 34 359 738 368 + 17 179 869 184 + 8 589 934 592 + 0 + 2 147 483 648 + 1 073 741 824 + 536 870 912 + 0 + 134 217 728 + 67 108 864 + 0 + 0 + 8 388 608 + 4 194 304 + 0 + 0 + 524 288 + 0 + 131 072 + 0 + 32 768 + 16 384 + 8 192 + 4 096 + 0 + 1 024 + 0 + 0 + 128 + 64 + 0 + 0 + 0 + 4 + 0 + 1)(10) =


(36 028 797 018 963 968 + 18 014 398 509 481 984 + 4 503 599 627 370 496 + 562 949 953 421 312 + 140 737 488 355 328 + 70 368 744 177 664 + 17 592 186 044 416 + 8 796 093 022 208 + 549 755 813 888 + 274 877 906 944 + 68 719 476 736 + 34 359 738 368 + 17 179 869 184 + 8 589 934 592 + 2 147 483 648 + 1 073 741 824 + 536 870 912 + 134 217 728 + 67 108 864 + 8 388 608 + 4 194 304 + 524 288 + 131 072 + 32 768 + 16 384 + 8 192 + 4 096 + 1 024 + 128 + 64 + 4 + 1)(10) =


59 348 197 076 300 997(10)

6. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:

0000 0000 1101 0010 1101 1000 1101 1110 1110 1100 1100 1010 1111 0100 1100 0101(2) = 59 348 197 076 300 997(10)

The signed binary number in two's complement representation 0000 0000 1101 0010 1101 1000 1101 1110 1110 1100 1100 1010 1111 0100 1100 0101(2) converted and written as an integer in decimal system (base ten):
0000 0000 1101 0010 1101 1000 1101 1110 1110 1100 1100 1010 1111 0100 1100 0101(2) = 59 348 197 076 300 997(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

The latest binary numbers written in two\'s complement representation converted to signed integers written in decimal system (in base ten)

Convert the signed binary number written in two's complement representation 0000 0000 0000 0111 0101 0101 0010 1000, write it as a decimal system (base ten) integer Sep 08 03:30 UTC (GMT)
Convert the signed binary number written in two's complement representation 0000 0000 1100 1100 1011 1100 0100 0101, write it as a decimal system (base ten) integer Sep 08 03:30 UTC (GMT)
Convert the signed binary number written in two's complement representation 1001 0100, write it as a decimal system (base ten) integer Sep 08 03:30 UTC (GMT)
Convert the signed binary number written in two's complement representation 0111 1101 0000 0110, write it as a decimal system (base ten) integer Sep 08 03:30 UTC (GMT)
Convert the signed binary number written in two's complement representation 0000 0000 0000 0000 0000 0000 0010 0001 0011 1001 0000 1001 0101 0000 1011 0001, write it as a decimal system (base ten) integer Sep 08 03:30 UTC (GMT)
Convert the signed binary number written in two's complement representation 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0001 0001 1001, write it as a decimal system (base ten) integer Sep 08 03:29 UTC (GMT)
Convert the signed binary number written in two's complement representation 0000 0000 0000 0000 0000 0000 0001 1111 1111 1111 1111 1111 1111 1110 1010 0011, write it as a decimal system (base ten) integer Sep 08 03:29 UTC (GMT)
Convert the signed binary number written in two's complement representation 0000 0000 0000 0001 1111 0010 1011 0111, write it as a decimal system (base ten) integer Sep 08 03:29 UTC (GMT)
Convert the signed binary number written in two's complement representation 0000 0000 1000 0001 0101 1100 0011 0100, write it as a decimal system (base ten) integer Sep 08 03:29 UTC (GMT)
Convert the signed binary number written in two's complement representation 0000 0000 0001 0100 0010 0010 0111 0110, write it as a decimal system (base ten) integer Sep 08 03:29 UTC (GMT)
All the signed binary numbers written in two's complement representation converted to decimal system (base ten) integers

How to convert signed binary numbers in two's complement representation from binary system to decimal

To understand how to convert a signed binary number in two's complement representation from the binary system to decimal (base ten), the easiest way is to do it by an example - convert binary, 1101 1110, to base ten:

  • In a signed binary two's complement, first bit (leftmost) indicates the sign, 1 = negative, 0 = positive. The first bit is 1, so our number is negative.
  • Get the signed binary representation in one's complement, subtract 1 from the initial number:
    1101 1110 - 1 = 1101 1101
  • Get the binary representation of the positive number, flip all the bits in the signed binary one's complement representation (reversing the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
    !(1101 1101) = 0010 0010
  • Write bellow the positive binary number representation in base two, and above each bit that makes up the binary number write the corresponding power of 2 (numeral base) that its place value represents, starting with zero, from the right of the number (rightmost bit), walking to the left of the number, increasing each corresonding power of 2 by exactly one unit:
  • powers of 2: 7 6 5 4 3 2 1 0
    digits: 0 0 1 0 0 0 1 0
  • Build the representation of the positive number in base 10, by taking each digit of the binary number, multiplying it by the corresponding power of 2 and then adding all the terms up:

    0010 0010(2) =


    (0 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 0 × 20)(10) =


    (0 + 0 + 32 + 0 + 0 + 0 + 2 + 0)(10) =


    (32 + 2)(10) =


    34(10)

  • Signed binary number in two's complement representation, 1101 1110 = -34(10), a signed negative integer in base 10.

The latest binary numbers written in two\'s complement representation converted to signed integers written in decimal system (in base ten)

Convert the signed binary number written in two's complement representation 0000 0000 1101 0010 1101 1000 1101 1110 1110 1100 1100 1010 1111 0100 1100 0101, write it as a decimal system (base ten) integer Sep 08 03:30 UTC (GMT)
Convert the signed binary number written in two's complement representation 0000 0000 0000 0111 0101 0101 0010 1000, write it as a decimal system (base ten) integer Sep 08 03:30 UTC (GMT)
Convert the signed binary number written in two's complement representation 0000 0000 1100 1100 1011 1100 0100 0101, write it as a decimal system (base ten) integer Sep 08 03:30 UTC (GMT)
Convert the signed binary number written in two's complement representation 1001 0100, write it as a decimal system (base ten) integer Sep 08 03:30 UTC (GMT)
Convert the signed binary number written in two's complement representation 0000 0000 0000 0000 0000 0000 0010 0001 0011 1001 0000 1001 0101 0000 1011 0001, write it as a decimal system (base ten) integer Sep 08 03:30 UTC (GMT)
Convert the signed binary number written in two's complement representation 0111 1101 0000 0110, write it as a decimal system (base ten) integer Sep 08 03:30 UTC (GMT)
Convert the signed binary number written in two's complement representation 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0001 0001 1001, write it as a decimal system (base ten) integer Sep 08 03:29 UTC (GMT)
All the signed binary numbers written in two's complement representation converted to decimal system (base ten) integers