What are the steps to convert the signed binary in two's (2's) complement representation to an integer in decimal system (in base ten)?
1. Is this a positive or a negative number?
0000 0000 0000 0000 0000 0000 0001 0101 0100 1010 1010 1010 0000 1011 1100 1000 is the binary representation of a positive integer, on 64 bits (8 Bytes).
- In a signed binary in two's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.
2. Get the binary representation in one's complement.
* Run this step only if the number is negative
- Note on binary subtraction rules:
- 11 - 1 = 10; 10 - 1 = 01; 1 - 0 = 1; 1 - 1 = 0.
Subtract 1 from the initial binary number.
* Not the case - the number is positive
3. Get the binary representation of the positive (unsigned) number.
* Run this step only if the number is negative
Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
* Not the case - the number is positive
4. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
263
0 262
0 261
0 260
0 259
0 258
0 257
0 256
0 255
0 254
0 253
0 252
0 251
0 250
0 249
0 248
0 247
0 246
0 245
0 244
0 243
0 242
0 241
0 240
0 239
0 238
0 237
0 236
1 235
0 234
1 233
0 232
1 231
0 230
1 229
0 228
0 227
1 226
0 225
1 224
0 223
1 222
0 221
1 220
0 219
1 218
0 217
1 216
0 215
0 214
0 213
0 212
0 211
1 210
0 29
1 28
1 27
1 26
1 25
0 24
0 23
1 22
0 21
0 20
0
5. Multiply each bit by its corresponding power of 2 and add all the terms up.
0000 0000 0000 0000 0000 0000 0001 0101 0100 1010 1010 1010 0000 1011 1100 1000(2) =
(0 × 263 + 0 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 0 × 255 + 0 × 254 + 0 × 253 + 0 × 252 + 0 × 251 + 0 × 250 + 0 × 249 + 0 × 248 + 0 × 247 + 0 × 246 + 0 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 0 × 241 + 0 × 240 + 0 × 239 + 0 × 238 + 0 × 237 + 1 × 236 + 0 × 235 + 1 × 234 + 0 × 233 + 1 × 232 + 0 × 231 + 1 × 230 + 0 × 229 + 0 × 228 + 1 × 227 + 0 × 226 + 1 × 225 + 0 × 224 + 1 × 223 + 0 × 222 + 1 × 221 + 0 × 220 + 1 × 219 + 0 × 218 + 1 × 217 + 0 × 216 + 0 × 215 + 0 × 214 + 0 × 213 + 0 × 212 + 1 × 211 + 0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20)(10) =
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 68 719 476 736 + 0 + 17 179 869 184 + 0 + 4 294 967 296 + 0 + 1 073 741 824 + 0 + 0 + 134 217 728 + 0 + 33 554 432 + 0 + 8 388 608 + 0 + 2 097 152 + 0 + 524 288 + 0 + 131 072 + 0 + 0 + 0 + 0 + 0 + 2 048 + 0 + 512 + 256 + 128 + 64 + 0 + 0 + 8 + 0 + 0 + 0)(10) =
(68 719 476 736 + 17 179 869 184 + 4 294 967 296 + 1 073 741 824 + 134 217 728 + 33 554 432 + 8 388 608 + 2 097 152 + 524 288 + 131 072 + 2 048 + 512 + 256 + 128 + 64 + 8)(10) =
91 446 971 336(10)
6. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
0000 0000 0000 0000 0000 0000 0001 0101 0100 1010 1010 1010 0000 1011 1100 1000(2) = 91 446 971 336(10)
The number 0000 0000 0000 0000 0000 0000 0001 0101 0100 1010 1010 1010 0000 1011 1100 1000(2), signed binary in two's (2's) complement representation, converted and written as an integer in decimal system (base ten):
0000 0000 0000 0000 0000 0000 0001 0101 0100 1010 1010 1010 0000 1011 1100 1000(2) = 91 446 971 336(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.