In a signed binary in two's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.
2. Get the binary representation in one's complement.
* Run this step only if the number is negative *
Note on binary subtraction rules:
11 - 1 = 10; 10 - 1 = 1; 1 - 0 = 1; 1 - 1 = 0.
Subtract 1 from the initial binary number.
* Not the case - the number is positive *
3. Get the binary representation of the positive (unsigned) number.
* Run this step only if the number is negative *
Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
* Not the case - the number is positive *
4. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
263
0 262
0 261
0 260
0 259
0 258
0 257
0 256
0 255
0 254
0 253
0 252
0 251
0 250
0 249
0 248
0 247
0 246
0 245
0 244
0 243
0 242
0 241
0 240
0 239
0 238
0 237
0 236
0 235
0 234
0 233
0 232
0 231
0 230
0 229
1 228
0 227
0 226
1 225
0 224
0 223
1 222
0 221
0 220
1 219
0 218
0 217
1 216
0 215
0 214
1 213
0 212
0 211
1 210
0 29
0 28
0 27
1 26
1 25
0 24
0 23
1 22
0 21
0 20
1
5. Multiply each bit by its corresponding power of 2 and add all the terms up.
0000 0000 0000 0000 0000 0000 0000 0000 0010 0100 1001 0010 0100 1000 1100 1001(2) =
(0 × 263 + 0 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 0 × 255 + 0 × 254 + 0 × 253 + 0 × 252 + 0 × 251 + 0 × 250 + 0 × 249 + 0 × 248 + 0 × 247 + 0 × 246 + 0 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 0 × 241 + 0 × 240 + 0 × 239 + 0 × 238 + 0 × 237 + 0 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 0 × 231 + 0 × 230 + 1 × 229 + 0 × 228 + 0 × 227 + 1 × 226 + 0 × 225 + 0 × 224 + 1 × 223 + 0 × 222 + 0 × 221 + 1 × 220 + 0 × 219 + 0 × 218 + 1 × 217 + 0 × 216 + 0 × 215 + 1 × 214 + 0 × 213 + 0 × 212 + 1 × 211 + 0 × 210 + 0 × 29 + 0 × 28 + 1 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20)(10) =
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 536 870 912 + 0 + 0 + 67 108 864 + 0 + 0 + 8 388 608 + 0 + 0 + 1 048 576 + 0 + 0 + 131 072 + 0 + 0 + 16 384 + 0 + 0 + 2 048 + 0 + 0 + 0 + 128 + 64 + 0 + 0 + 8 + 0 + 0 + 1)(10) =
(536 870 912 + 67 108 864 + 8 388 608 + 1 048 576 + 131 072 + 16 384 + 2 048 + 128 + 64 + 8 + 1)(10) =
613 566 665(10)
6. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
0000 0000 0000 0000 0000 0000 0000 0000 0010 0100 1001 0010 0100 1000 1100 1001(2) = 613 566 665(10)
The signed binary number in two's complement representation 0000 0000 0000 0000 0000 0000 0000 0000 0010 0100 1001 0010 0100 1000 1100 1001(2) converted and written as an integer in decimal system (base ten):
0000 0000 0000 0000 0000 0000 0000 0000 0010 0100 1001 0010 0100 1000 1100 1001(2) = 613 566 665(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.