1. Is this a positive or a negative number?
1111 1000 1110 1101 0001 1100 1010 0101 is the binary representation of a negative integer, on 32 bits (4 Bytes).
In a signed binary, the first bit (the leftmost) is reserved for the sign,
1 = negative, 0 = positive. This bit does not count when calculating the absolute value.
2. Construct the unsigned binary number.
Exclude the first bit (the leftmost), that is reserved for the sign:
1111 1000 1110 1101 0001 1100 1010 0101 = 111 1000 1110 1101 0001 1100 1010 0101
3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
230
1 229
1 228
1 227
1 226
0 225
0 224
0 223
1 222
1 221
1 220
0 219
1 218
1 217
0 216
1 215
0 214
0 213
0 212
1 211
1 210
1 29
0 28
0 27
1 26
0 25
1 24
0 23
0 22
1 21
0 20
1
4. Multiply each bit by its corresponding power of 2 and add all the terms up.
111 1000 1110 1101 0001 1100 1010 0101(2) =
(1 × 230 + 1 × 229 + 1 × 228 + 1 × 227 + 0 × 226 + 0 × 225 + 0 × 224 + 1 × 223 + 1 × 222 + 1 × 221 + 0 × 220 + 1 × 219 + 1 × 218 + 0 × 217 + 1 × 216 + 0 × 215 + 0 × 214 + 0 × 213 + 1 × 212 + 1 × 211 + 1 × 210 + 0 × 29 + 0 × 28 + 1 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20)(10) =
(1 073 741 824 + 536 870 912 + 268 435 456 + 134 217 728 + 0 + 0 + 0 + 8 388 608 + 4 194 304 + 2 097 152 + 0 + 524 288 + 262 144 + 0 + 65 536 + 0 + 0 + 0 + 4 096 + 2 048 + 1 024 + 0 + 0 + 128 + 0 + 32 + 0 + 0 + 4 + 0 + 1)(10) =
(1 073 741 824 + 536 870 912 + 268 435 456 + 134 217 728 + 8 388 608 + 4 194 304 + 2 097 152 + 524 288 + 262 144 + 65 536 + 4 096 + 2 048 + 1 024 + 128 + 32 + 4 + 1)(10) =
2 028 805 285(10)
5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
1111 1000 1110 1101 0001 1100 1010 0101(2) = -2 028 805 285(10)
The number 1111 1000 1110 1101 0001 1100 1010 0101(2) converted from a signed binary (base two) and written as an integer in decimal system (base ten):
1111 1000 1110 1101 0001 1100 1010 0101(2) = -2 028 805 285(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.